• Title/Summary/Keyword: purification of water quality

Search Result 278, Processing Time 0.03 seconds

Development and Application of a Water Quality Model to Assess Water Purification Techniques for Lakes and Reservoirs (호소수질정화공법의 평가를 위한 수질모형의 개발 및 적용)

  • 박병흔;권순국;장정렬
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.174-186
    • /
    • 2001
  • Excessive outflow of pollutant loads resulting from rapid industrialization has unbalanced the water ecosystem, deteriorating the water quality environment severely. Therefore, measures for improving the water quality are necessary to maintain clean reservoir water and restore water-friendly spaces. A water quality model which is capable of simulating daily reservoir water quality was developed. The model had been applied to Masan reservoir and Wanggung reservoir in Korea. The model appeared to be satisfactory in representing the trend of water quality variations by comparing measured and simulated results. The model had been also applied to assess water purification techniques such as dredged pool, floating island and vegetation purification system. The model was considered to assess the effect of water purification techniques on reservoir water quality improvement. The results of water quality simulation for lake water purification techniques showed that a large facility would be needed to meet the targeted water quality of the reservoir when only one technique is applied. To effectively improve the quality of the polluted reservoir water, it is therefore recommended that pollutant sources should first be controlled, and a combination of the water purification techniques applied to make the utmost use of their secondary effects such as conservation of the reservoir volume capacity, establishment of a recreation space, promotion of bio-diversity, and improvement of the lake landscape.

  • PDF

A Study on the Water-Purification Characteristics of Bio-Composite Planting Blocks (바이오 복합 식생블록의 수질정화 특성 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Choi, Joong-Dae;Kim, Ki-Sung;Seo, Ji-Yeon;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.75-82
    • /
    • 2011
  • This study was performed to evaluate the water purification properties of bio-composites planting blocks using oyster shell and effective microorganism that have high absorption ability of heavy metals and organics to develop environmentally friendly river embankment technique contained various factors such as oyster shells, effective microorganism, porous concrete and planting embankment block. To maximize greening effect, the seeds were arbitrarily sown. In addition, in order to analyze the effect of water quality purification after the planting, the samples were collected from each designated zone 1, 7 and 30 days after steeping in water. Then, the samples were analyzed in terms of seven test items such as SS, BOD, COD, T-N, T-P, pH, etc. on the basis of the test method for water pollution. The following conclusions were reached from the test result. As a result of analysis for water quality purification for the concrete block containing the effective microorganism, it was found that the values for SS, BOD, T-N and T-P for the sample taken after 30 days were lower than the initial values, which indicated that the water purification effect had been created. The result of the water quality purification analysis for the concrete block containing oyster shell showed that the values for SS, BOD, COD and T-P for the sample taken after 30 days were lower than the initial values which also indicated that it had been effective in water quality purification.

A Study on the Water Quality Purification Effect of Aquatic Plants in field work (현장실험을 통한 수생식물의 수질정화 효과에 관한 연구)

  • Lee Jong-Sung;Kim Ki-Nam
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.937-944
    • /
    • 2005
  • Presently, aquatic plants are used for the water purification in inland water. This study was carried out to investigate the water purification effect of aquatic plants, Oenanthe javanica and Typha angustata, The experiment was conducted in outdoor flowing water was conducted for ten days, Water quality was measured in terms of water temperature, COD(chemical oxygen demand), SS(suspended solids), Total N, Total P. The results of field experimentation showed that hydraulic retention time was the earliest in July and August 2003, and there were not any particular changes of monthly water temperature in inflow water and outflow water. As we look at the changes taken place in inflow water and outflow water throughout the whole experiment period, the change of water quality in summer was salient, especially SS removal ratio showed distinguished change as $25\%$, when the pebble filter and aquatic were attached to it. The removal rate of COD, total N total P were $14,7\%,\;8\%\;and\;9\%$, respectively. In relating the length of water extension to the change in water quality, the water quality tended to get lower generally in proportion to hydraulic retention time.

Purification of Stream Water Quality by Using Rope Media Filter (끈상접촉산화시설을 이용한 하천수질정화)

  • Jung, Yong-Jun;Lim, Ki-Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.238-243
    • /
    • 2006
  • In order to improve the water quality of stream water, the facilities equipped with rope media filter have been examined as a part of national projects. This work may provide design and operating parameters from 2 years monitoring for 2 streams. Depending on the characteristics of streams, the flow rate into the facilities were shown different, where K stream was almost the same and D stream was less than 25% of design flow rate. Although the clogging of filter media was not observed during the operation, the removal of accumulated sludges was required for the stable operation. The removal efficiencies of BOD, SS, T-N and T-P for D stream were 60.5%, 80.1%, 25.2% and 36.2%, respectively. The most important factor for the construction of stream water purification facilities was recommended for the selection of proper sites.

A study on coagulant dosing process in water purification system (상수처리시스템의 응집제 주입공정 모델링에 관한 연구)

  • 남의석;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.317-320
    • /
    • 1997
  • In the water purification plant, chemicals are injected for quick purification of raw water. It is clear that the amount of chemicals intrinsically depends on the water quality such as turbidity, temperature, pH and alkalinity etc. However, the process of chemical reaction to improve water quality by the chemicals is not yet fully clarified nor quantified. The feedback signal in the process of coagulant dosage, which should be measured (through the sensor of the plant) to compute the appropriate amount of chemicals, is also not available. Most traditional methods focus on judging the conditions of purifying reaction and determine the amounts of chemicals through manual operation of field experts or jar-test results. This paper presents the method of deriving the optimum dosing rate of coagulant, PAC(Polymerized Aluminium Chloride) for coagulant dosing process in water purification system. A neural network model is developed for coagulant dosing and purifying process. The optimum coagulant dosing rate can be derived the neural network model. Conventionally, four input variables (turbidity, temperature, pH, alkalinity of raw water) are known to be related to the process, while considering the relationships to the reaction of coagulation and flocculation. Also, the turbidity in flocculator is regarded as a new input variable. And the genetic algorithm is utilized to identify the neural network structure. The ability of the proposed scheme validated through the field test is proved to be of considerable practical value.

  • PDF

A Study on Water Purification Effect of Media Block Using Porous Ceramics and Zeolite (다공성 세라믹과 제올라이트를 활용한 수질정화미디어블럭의 효과 연구)

  • Jeon, Sung-yool;Koo, Bon-hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.5
    • /
    • pp.59-66
    • /
    • 2017
  • Preeminent water treatment plans are essential to preserve the water quality of aquatic biotopes. Previous studies have not been sufficient to provide cost-effective maintenance method since they focused only on the purification of deteriorated water that requires a continuous supply of clean water. This study proposes an economical method of water quality maintenance using water treatment media block constructed vertically using porous ceramics, zeolite, and river pebble. The water treatment media block does not require a separate purification area because it functions as a purifier within the ecological pond which can maximize the biotope area. To evaluate the performance of the water treatment media block, we longitudinally tracked the change of water quality indicators (pH, TDS, COND, DO, T-P, T-N, COD) suggested by Water Environment Standards, Ministry of Environment, Republic of Korea. We compared the water quality of one control (A: general ecological pond composition method of the laminated structure) and two experimental groups (B: a combination of aquatic plants and a water treatment media block, C: a water treatment media block only). As a result, we confirmed that the water treatment media block is an efficient and economical method to maintaining the water quality of the ecological pond for a long time. The water treatment media block will be a great help in providing a better aquatic biotope space for aquatic insects and fishes living in clear water.

Application of water control by high fiux MF membrane (고 플럭스 MF막의 정수처리 실용화에 관한 연구)

  • Yong, Hwang-Sang
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.2
    • /
    • pp.55-63
    • /
    • 2008
  • All over the world, the existing process of water purification needs more flocculants and chlorine due to a gradual decline in the quality of source water. Therefore, the problem of the remaining aluminium and DBPs in purified water is on the rise. To solve this problem, the process of membrane filter has recently come into the spotight. This study reaches the following conclusions concerning TMP variation in order to solve the dropping of flux throgh a membrane filter when operating a membrane filter system in the process of water purification. 1. In case that a cohesion-precipitation process was introduced to pre-treatment of a membrane filter, initial TMP was very satisfactory(0.27kg/cm) in producing the constantly safe quality of water, $0.04{\sim}0.1$(mean 0.05) NTU by pouring 2mg/l of PACI(10% $Al_2O_3$) used for the existing process of water purification in high-density turbidity at a dry or flood season and at occurrence of high algae. 2. As flux increased at 0.5m/day.m, TMP increased 0.05 kgf/cm. 3. As filtering, operation mode of PVDF MF membrane filtering was 48 minutes and 1 cycle of back washing was 42 minutes, flux was increased 1.5m/day.m and TMP increased $0.25{\sim}0.27kgf/cm$. Without back washing, TMP increased 0.03 kgf/cm per a cycle.

Strength and Water Purification Characteristics of Effective Microorganism-applied Volcanic Ash Block (유용미생물을 적용한 화산재 블록의 강도 및 수질정화 특성)

  • Lee, Chung-Won;Chang, Dong-Su;Park, Sung-Yong;Choi, Joong-Dae;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.77-85
    • /
    • 2013
  • The aim of this study is to investigate strength and water purification characteristics of effective microorganism-applied volcanic ash block using flexural strength test and water quality analysis. The specimens were prepared with volcanic ash from Mt. Baekdusan and Mt. Hallasan, and cement as the ratios of 3.5:1, 4.0:1, 4.5:1, 5.0:1 with and without metakaolin. Flexural strength degraded with increasing of the amount of volcanic ash, and increased with addition of metakaolin as a binder. Based on these results, the optimal ratio for fabricating volcanic ash-cement mixture block is determined as 3.5:1 with metakaolin. Furthermore, from water quality analysis on contaminated water, removal ability of effective microorganism-applied volcanic ash-cement mixture block and caged volcanic ash block against T-N, T-P and SS was highly evaluated because of adsorption due to the large specific surface area of volcanic ash. Hence, volcanic ash-cement mixture block and caged volcanic ash block possibly contribute to water purification.

A Study on Measures for Water Quality Improvement in Irrigation Reservoir (농업용 저수지의 수질개선방안에 관한 연구)

  • 박병흔;장정렬;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.500-507
    • /
    • 1998
  • The measures for water quality improvement have been planned to introduce for several reservoirs which were badly polluted among the sites included in the Network of Agricultural Water Quality Survey (NAWQS). Considering conditions of circumstances around reservoirs, self-purification systems such as natural ecosystem, oxidation ponds with plants, grassed waterways, weirs, and manmade plant-islands are taking into account enhancing to trap nutrients in waters running off from agricultural lands. The Pollutant Run off Ratios were analysed to predict the effects of water quality improvement for self-purification systems. The cost of water quality improvement was evaluated. The correlation equation between cost and irrigation area showing high correlation coefficient was derived.

  • PDF