• 제목/요약/키워드: pure refrigerant

검색결과 78건 처리시간 0.023초

동력 공급 장치 선택을 통한 C3MR 공정의 순수냉매 사이클 설계 분석 (Analysis of Pure Refrigerant Cycle Design on C3MR Process through Driver Selection)

  • 이인규;탁경재;임원섭;문일;김학성;최광호
    • 한국가스학회지
    • /
    • 제17권3호
    • /
    • pp.27-32
    • /
    • 2013
  • 극저온에서 운전되는 천연가스 액화공정은 에너지 소모가 매우 크다. 천연가스 액화공정 내 대부분의 에너지는 압축기에서 소모되기 때문에 압축기에 소모되는 총 에너지 소모량을 최소화 시키는 것이 공정 설계 및 운전 시 중요한 요소가 된다. 다양한 천연가스 액화공정 중 C3MR (Propane Pre-cooled Mixed Refrigerant) 공정은 혼합냉매와 순수냉매 사이클로 구성된다. 본 연구에서는 C3MR 공정 내 순수냉매 사이클의 최적의 설계를 찾기 위해 압력의 수를 다르게 하여 모사하였다. 이를 통해 압력 단계에 따라 압축기에서 필요로 하는 에너지양을 비교하였다. 또한, 장치 수에 따른 공정의 비용 분석을 위해 동력 공급 장치 선택 모델을 적용하였다. 결론적으로 장치를 많이 사용하는 설계일수록 더 적은 에너지를 필요로 한다는 결과를 얻을 수 있었으며, 이를 비용적인 측면으로 전환하여 평가 할 수 있는 기준을 제시하였다.

Some Aspects of Experimental in-Tube Evaporation

  • Ha, Sam-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제14권5호
    • /
    • pp.537-546
    • /
    • 2000
  • The heat transfer characteristics of refrigerant-oil mixture for horizontal in-tube evaporator have been investigated experimentally. A smooth copper tube and a micro-fin tube with nominal 9.5 mm outer diameter and 1500 mm length were tested. For the pure refrigerant flow, the dependence of the axial heat transfer coefficient on quality was weak in the smooth tube, but in the micro-fin tube, the coefficients were 3 to 10 times greater as quality increases. Oil addition to pure refrigerant in the smooth tube altered the flow pattern dramatically at low mass fluxes, with a resultant enhancement of the wetting area by vigorous foaming. The heat transfer coefficients of the mixture for low and medium qualities were increased at low mass fluxes. In the micro-fin tube, however, the addition of oil deteriorates the local heat transfer performance for most of the quality range, except for low quality. The micro-fin tube consequently loses its advantage of high heat transfer performance for an oil fraction of 5%. Results are presented as plots of local heat transfer coefficient versus quality.

  • PDF

수평관에서 이원 혼합냉매의 응축 열전달계수 (Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on a Horizontal Smooth Tube)

  • 김경기;서강태;정동수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1049-1056
    • /
    • 2000
  • In this study, condensation heat transfer coefficients(HTCs) of 2 nonazeotropic refrigerant mixtures of HFC32/HFC134a and HFC134a/HCFC123 at various compositions were measured on a horizontal smooth tube. All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3~8K. Test results showed that HTCs of tested mixtures were 11.0~85.0% lower than the ideal values calculated by the mass fraction weighting of the pure components HTCs. Thermal resistance due to the diffusion vapor film was partly responsible for the significant reduction of HTCs with these nonazeotropic mixtures. The measured data were compared against the predicted ones by Colburn and Drew\`s film model and a good agreement was observed.

  • PDF

HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하 (Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures)

  • 장세동;노승탁
    • 설비공학논문집
    • /
    • 제7권4호
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

혼합냉매를 사용한 열펌프의 성능해석 (I) (Performance Analysis of a Heat Pump Using Refrigerant Mixtures (I))

  • 원성필;김민수;김동섭;노승탁
    • 설비공학논문집
    • /
    • 제2권2호
    • /
    • pp.142-154
    • /
    • 1990
  • A theoretical cycle analysis has been performed for a basic heat pump, charged with non-azeotropic refrigerant mixtures, R22/R114 and R13B1/R152a. At first, a procedure is introduced to calculate thermodynamic properties simply and correctly, and the advantages of using refrigerant mixtures are discussed through the cycle analysis. It is shown that by using refrigerant mixtures in the heat pump, several improvements can be made. In comparison with conventional pure refrigerants, the application of refrigerant mixtures results in high reliabilities caused by the extension of the application limit, energetic improvements, and a continuous capacity control. From generalizing various results, the optimum compositions in refrigerant mixtures are also determined. The 30%/70% and 40%/60% compositions are selected for R22/R114 and R13B1/R152a, respectively.

  • PDF

열전달 촉진관에서 2원 혼합냉매의 외부 응축열전달계수 (Condensation Heat Transfer Coefficients of Binary Refrigerant Mixtures on Enhanced Tubes)

  • 김경기;서강태;채순남;정동수
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.161-167
    • /
    • 2002
  • In this study, external condensation heat transfer coefficients (HTCs) of two non-azeotropic refrigerant mixtures of HFC32/HFC134a and HF0134a/HCF0123 at various compositions were measured on both low fin and Turbo-C enhanced tubes of 19.0 mm outside diameter All data were taken at the vapor temperature of 39$^{\circ}C$ with a wall subcooling of 3- 8 K. Test results showed that HTCs of the tested mixtures on the enhanced tubes were much lower than the ideal values calculated by the mass fraction weighting of the pure compo- nents'HTCs. Also the reduction of HTCs due to the diffusion vapor film was much larger than that of a plain tube. Unlike HTCs of pure fluids, HTCs of the mixtures measured on enhanced tubes increased as the wall subcooling increased, which was due to the sudden break up of the vapor diffusion film with an increase in wall subcooling. Finally, heat transfer enhancement ratios for mixtures were found to be much lower than those of pure fluids.

순수냉매의 흐름응축 열전달계수 (Flow Condensation Heat Transfer Coefficients of Pure Refrigerants)

  • 김신종;송길홍;정동수
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.175-183
    • /
    • 2002
  • Flow Condensation heat transfer coefficients (HTCs) of Rl2, R22, R32, Rl23, Rl25, R134a, R142b were measured experimentally on a horizontal plain tube. The experi- mental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in a refrigerant loop was made of a copper tube of 8.8 mm inner diameter and 1000 mm length respectively. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. All tests were performed at a filed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, 300 kg/$m^2$s. The experimental result showed that flow condensation HTCs increase as the quality, mass flux, and latent heat of condensation increase. At the same mass flux, the HTCs of R32 and R142b were higher than those of R22 by 35~45% and 7~14% respectively while HTCs of R134a and Rl23 were similar to those of R22. On the other hand, HTCs of Rl25 and Rl2 were lower than those of R22 by 28 ~30% and 15 ~25% respectively Finally, a new correlation for flow condensation HTCs was developed by modifying Dobson and Chato's correlation with the latent heat of condensation considered. The correlaton showed an average deviation of 13.1% for all pure fluids data indicating an excellent agreement.

비공비혼합냉매를 이용한 열펌프의 냉난방성능에 관한 연구 (Performance of the Cooling and Heating of Heat Pump Using Non-azeotropic Refrigerant Mixtures)

  • 박기원;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.53-61
    • /
    • 1994
  • An experimental study on heat pump cycle systematizing characteristics for non-azeotropic refrigerant mixtures of R-22+R-114 was reported. Data were obtained under steady state condition at the ranges of parameters, 550- 2, 170kcal/h, 670-2, 990kcal/h, 24-71kg/h, and 0-1, for as cooling capacity, heating capacity, mass 25, 50, 75, and 100 per cent of R-22 by weight fraction for R-22+R-114 mixtures. The results shown that the C.O.P of the 50wt% of R-22 mixture was considerably larger than for pure R-22 and other weight fraction of R-22 mixtures, but the compression power of the 25wt% of R-22 was lower than that of the pure R-22 and the other weight fraction of R-22 mixtures. The hightest value of cooling capacity was obtained at the conditions of evaporating temperature 5.deg.C and R-22 50wt% mixture. In general, with an increase in the R-22 weight fraction for fixed values of the other parameter, the cooling capacity increased at first, obtained a maximum, and then decreasd. This verified the importance of accurate weight fractions od refrigerant mixtures in the heat pump cycle.

  • PDF

C3-MR 공정의 프로판 사이클 압력 레벨에 따른 에너지효율 최적화를 위한 사례연구 (Case Studies for Optimizing Energy Efficiency of Propane Cycle Pressure Levels on C3-MR Process)

  • 이인규;탁경재;임원섭;문일;김학성;최광호
    • 한국가스학회지
    • /
    • 제15권6호
    • /
    • pp.38-43
    • /
    • 2011
  • 천연가스 액화공정은 극저온에서 운전되며 에너지 소비가 매우 크기 때문에 압축기의 에너지 소모를 최소화하는 것이 공정의 효율 측면에서 중요하다. 여러 가지 천연가스 액화공정 중 C3-MR(Propane Pre-cooled Mixed Refrigerant) 공정의 경우 순수냉매인 프로판과 혼합냉매를 사용하는 두 개의 냉각 사이클로 구성되어있다. 본 연구에서는 C3-MR 공정에서 최적의 프로판 압력 레벨을 찾기 위해 프로판 사이클을 별개로 구성하여 모사하였다. 또한, 압력 레벨에 따른 조건을 변화시켜가며 사례 연구를 수행하고 이를 통해 압축기에서 소모되는 에너지양을 비교하였다. 그 결과 압력 레벨이 높을수록 총 에너지 소모량이 감소하는 것을 확인 할 수 있었다. 압력 레벨이 3일때 보다 압력 레벨이 5일 때 에너지 소모는 약 23.7% 감소하는 값을 얻을 수 있었다.

자동차용 에어컨 성능실험과 액서지 해석 (Performance Experiment and Exergy Analysis of an Automotive Air-conditioning System)

  • 오상한;윤종갑;원성필
    • 설비공학논문집
    • /
    • 제12권4호
    • /
    • pp.363-370
    • /
    • 2000
  • Experiments have been peformed, using pure refrigerant R134a and a zeotropic refrigerant mixture R290/R600a(60%/40%) and their performances have been analyzed by the first and second laws(exergy method) of thermodynamics. From the experimental results, variations of compressor speed and air temperature have a great effect on the performance of the system. The sum of exergy losses in compressor and evaporator is about 60% of total exergy loss, using refrigerant R134a, so it is necessary to improve the performance of compressor and evaporator. According to the experimental results using refrigerant mixture of R290/R600a(60%/40%), the exergy losses in heat exchange processes are decreased but the exergy loss in throttling process is increased. The performance of the system has been improved by 20∼30% compared with that of R134a and exergy losses have been also reduced.

  • PDF