• Title/Summary/Keyword: pumping water

Search Result 645, Processing Time 0.028 seconds

A Cost-Benefit Analysis of Groundwater Supply through Pumping Well Technology

  • Kim, Sun G.
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2015.11a
    • /
    • pp.479-487
    • /
    • 2015
  • In Korea, there are 1,474 thousand pumping wells nationwide which account for about 12% of total water use in 2012. As much as 39 hundred million tons of groundwater were used while 333 hundred million tons of total water were supplied in 2012. Because the water management authority projects that water demand will exceed supply by 2021, the authority is planning to extensively expand groundwater use in accordance with economic feasibility. Using the basic frameworks of cost-benefit analyses of the World Bank and the US Environmental Protection Agency (US EPA), the objective of this study is to examine the costs and benefits of the expansion of Korea's groundwater extraction through pumping wells. We conclude that the BC ratio of the groundwater pumping wells is 2.98. This signifies that the benefits are 2.98 times higher than the costs. The benefits include use and non-use values of pumping wells while the costs include the installation and maintenance of new wells, in addition to the restoration and pollution costs of abandoned wells, as well as fees for water quality tests, etc.

  • PDF

Transition of Pumping Technology, Irrigation Water Requirement, and Unit Area Drainage Discharge at Pumping Station-based Irrigation Associations in South Korea during Japanese Colonial Period (in Review) (일제하 양배수장형 수리조합에서의 양수기술과 단위용·배수량의 변천 (리뷰 논문))

  • Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.59-73
    • /
    • 2021
  • The purpose of this study is to investigate transition of pumping technology, irrigation water requirement, and unit area drainage discharge at the Pumping station-based Irrigation Associations (PIAs) in South Korea during Japanese colonial period (1910-1945). The PIAs established pumping stations and embankments along rivers for the purpose of irrigation, drainage and flood prevention until the mid-1920s. From the late 1920s after major river improvement projects, newly established PIAs did not include the flood prevention in their purpose of establishment. The design criteria of the irrigation and drainage projects, such as irrigation water requirements, design rainfall, and allowable ponding duration were decided according to the circumstances of PIAs. The gross irrigation water requirement of paddy fields increased from the 1920s to the 1940s, and reached the level of 0.0020 m3/s/ha (19 mm/d) in the 1940s for the fairly good irrigation status in the drought. The great floods of 1930, 1933, and 1934 triggered the increase in drainage discharge in the late 1930s, leading to the unit area drainage discharge of 0.9-2.6 m3/s/km2 for natural drainage and 0.3-1.1 m3/s/km2 for pump drainage. Therefore, several PIAs near the major rivers could avoid repetitive floods damage.

Estimation of water efficiency for the irrigation pumping area in the Han River basin (한강유역의 농업용수 양수장 물관리 효율 산정(관개배수 \circled1))

  • Kim, Chul-Gyum;Kim, Hyeon-Jun;Kim, Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.132-137
    • /
    • 2000
  • A term, $\ulcorner$Water Efficiency$\lrcorner$ was defined as a measure for the effective water management improvements in agriculture. To estimate the water efficiency, 7-year (1993∼1999) historical pumping records were collected from 59 pumping stations and water requirements of paddy fields for each station were estimated in the Han River basin. The water efficiency was estimated monthly and annually, and the assessment of the results was performed for each station and the associated branch offices of KARICO.

  • PDF

Investigation of Irrigation Water Use in Sumjin River Basin

  • Choi, Jin-Kyu;Yoon, Kwang-Sik;Choi, Soo-Myung;Park, Seung-Woo;Son, Jae-Gwon;Koo, Ja-Woong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42
    • /
    • pp.1-8
    • /
    • 2000
  • To examine the irrigation water uses in Sunjin river basin, existing status and operation records of headworks facilities including reservoirs, pumping stations, tube wells, and diversion dams were surveyed and analyzed for the period of 1994∼1998. Daily irrigation demand and water use were estimated for the irrigated paddy field using penman equation, Thank model, reservoir water balance model and daily pumping rate of pumping stations. Irrigation water use from multi-purpose dams in the basin was not included in this study.

  • PDF

Analysis of Agricultural Water Distribution Systems for the Utilization of Water-Demand-Oriented Water Supply Systems (물수요 중심 용수공급시스템 활용을 위한 국내 농업용수 공급체계 분석)

  • Lee, Kwang-Ya;Choi, Kyung-Sook
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.139-147
    • /
    • 2013
  • This study analyzed agricultural water distribution systems for the utilization of water demand-oriented water supply systems. Three major TM/TC(telemeter/telecontrol) districts of agricultural water management were selected for analyzing the characteristics of the water distribution systems. In addition, the characteristics of the water supply systems for general water supply zones based on irrigation facilities were also investigated, along with the case of special water management during the drought season. As a result, high annual and monthly variations were observed for the water supply facilities, including the reservoirs and pumping stations. In particular, these variations were more obvious during the drought season, depending on the type of facility. The operations of the pumping stations and weirs were more sensitive to the stream levels than the reservoirs, and the smaller reservoirs were influenced more than the larger reservoirs. Therefore, a water-demand-oriented water supply system should consider the existing general practices of water management in the agricultural sector, and focus on achieving a laborsaving system rather than water conservation in the case of reservoirs. Equal water distribution from the start to the end point of irrigation channels could be an effective solution for managing pumping stations.

  • PDF

Flow Properties of Water Additive Corn-Cob-Mix for Handling by Pump (수분(水分)첨가된 옥수수(Corn-Cob-Mix)의 펌프 운송(運送) 시(時)의 유체성질(流體性質) 구명(究明))

  • Oh, I.H.;Heege, H.J.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1989
  • The flow properties of water added com-cob-mix(CCM) were studied in order to provide basic information for designing its pumping system. For the study, a model system similar to actual situation was constructed. From the experiment, it can be concluded that the flow properties of the water added CCM has close relationship with its moisture content as follows; 1. The pressure drop caused by friction was very low when the moisture content of water added CCM was more than 70%. However, when the moisture content of the material is about 60%, the pressure drop increases up to 10 kPa/m at low pumping speed, and 20 kPa/m at high pumping speed, respectively. 2. The water added CCM having about 65% moisture content showed pseudo-plastic flow characteristics. 3. As the moisture content of the material decreases, the shear stress increases more rapidly than the shear rate does. Finally, below approximately 60% moisture, the shear stress becomes a linear relationship with the shear rate. 4. It was possible to pump the material having the moisture content down to 58% through a pipe having 80 mm diameter by a pump operating at 234 rpm. However, by either increasing the diameter of the pipe or decreasing the pumping speed, it can be possible to pump the material having lower moisture content than 55%.

  • PDF

Estimation of the Change in Ground Water Level using Regression Analysis (회귀분석을 이용한 지하수 수위 변화 추정)

  • Kim, Sang-Min;Ahn, Byeong-Il
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.51-58
    • /
    • 2011
  • The objective of this study is to identify whether or not the ground water level is decreasing. We suggest a method of estimating the change in groundwater level using newly developed groundwater pumping station data. The Goseong area located in Gyeongnam province was selected considering three factors. First, this area demands relatively large amount of irrigation water because most of the land is used as a paddy field and the proportion of the paddy field within total arable land is increasing. Second, groundwater level data in nearby area are available since these are monitored by Water Management Information System (WAMIS). Third, many groundwater pumping stations have been developed in this area in order to overcome droughts thus detail information for pumping stations are available. Regression results indicate groundwater level has been decreased for over 20 years. This decreasing trend is due to the shortage of surface irrigation water which was caused by the decrease in rainfall.

A Study on the Correlation between Pumping Rates and Influential Factors in Tube Wells for Irrigation (관개용 관정의 양수량과 영향인자들의 상관관계에 관한 연구)

  • 류한열;구자웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3410-3419
    • /
    • 1974
  • The purpose of this study is to find out the correlation between pumping rates and influential factors in the tube wells for irrigation through the analysis of various statistical data of the existing tube wells for irrigation and pumping tests. Statistical data of the existing tube wells for irrigation were collected from the authorities concerned, and pumping tests were carried out for twelve tube wells. The results of this study are summarized as follows: 1. The drilled tube wells are the most useful among various tube wells in securing pumping rates. 2. The enlargement of well diameter or the improvement of pumping equipments is necessary in drilled tube wells with pumping rates more than 806 ㎥/day, and the adjustment of foot valves or the special control of pumping equipments is necessary in tube wells with pumping rates less than 300 ㎥/day. 3. The choking of aquifer and slits can be prevented by removing earth and sand piled in tube wells. 4. The increase of well loss and the destruction of aquifer can be prevented by determining the optimum pumping rates through the step draw down tests. 5. The thickness of gravel packing is rather thin in drilled tube tube wells. 6. High pamping rates can be gained by deepening the depth of tube wells in the place the ground water storage is abundant, the thickness of aquifer is thick. and the depth of tube wells is deep. 7. Higher pumping rates can be obtained by constructing tube wells in the place where the drawdown is little and the coefficient of transmissibility is large.

  • PDF

Estimation of Return Flow Rate of Irrigation Water in Daepyeong Pumping District (대평 양수장 지구의 농업용수회귀율 추정)

  • Kim, Tai-Cheol;Lee, Ho-Choun;Moon, Jong-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.41-49
    • /
    • 2010
  • Return flow rate of irrigation water was estimated by water balance method. Daepyeong pumping district to irrigate 75.8 ha of rice paddy in the Geum river basin was selected to install gauging instruments to collect data such as weather, water levels, infiltration rate and evapotranspiration during irrigation season (May 27 to Sept. 20) in 2003 and 2004. Irrigation and drainage discharge were calculated from the rating curve and evapotranspiration was estimated both by the modified Penman formula and by the lysimeter. The results were as followed : 1. Total amounts of pumping water during irrigation season were $1,076,000\;m^3$ in 2003 and $1,848,000\;m^3$ in 2004. Total amounts of rainfall were 1336.0mm and 1003.0mm respectively during the irrigation season in 2003 and 2004. 2. It was surveyed that the amount of infiltration was 196.5 mm (2.2 mm/day). The gauged evapotranspiration was 311.0 mm (3.5 mm/day) and the calculated evapotranspiration was 346.0 mm (3.9 mm/day) during irrigation period in 2003. It was surveyed that the amount of infiltration was 169.9 mm (2.4 mm/day). The amount of gauged evapotranspiration was 377.3 mm (5.3 mm/day) and the calculated evapotranspiration was 454.5 mm (6.6 mm/day) during irrigation period in 2004. 3. The rates of quick and delayed return flow were 52.4 % and 17.7 % respectively, and so return flow rate was 70.1 % in 2003. The rates of quick and delayed return flow were 45.4 % and 16.1 % respectively, and so return flow rate was 61.5 % in 2004. It means that average return flow rate in the Daepyeong pumping district was assumed to be 65 %.