• Title/Summary/Keyword: pumping pressure

Search Result 343, Processing Time 0.033 seconds

A Study on Effects of Piston Pumping Phase on Vibration and Noises of Tandem Swash Plate Type Axial Piston Pump(2) (피스톤 펌핑 위상이 텐덤형 사판식 액셜 피스톤 펌프의 진동, 소음에 미치는 영향에 관한 연구(2))

  • Park, Sung-Hwan;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.31-39
    • /
    • 1999
  • Previous researches and experiments have already verified that the primary noise source of high pressure tandem axial thpe piston pump is fluid-borne noise from the process of oil distribution between the kidney-shaped port and valve plate. So, many researchers have improved pressure gradients and reduced sound levels by applying pre-compression and pre-decompression metering grooves to valve plate. In practice however, the sound level of th high pressure tandem axial type piston pump is still undesirable. This paper testified the effect of pumping phase of the piston on vibration and noise of th high pressure tandem axial type piston pump on the best of theoretical research in $this^(1)$. Therefore considering the pumping phase of the piston when assembling the tandem axial type piston pump, it is possible to reduce 1.5~2[dB]of sound level.

  • PDF

A Study on the Discharge Pressure Ripple Characteristics of Variable Displacement Vane Pump (가변용량형 유압 베인펌프의 토출압력맥동 특성 연구)

  • 장주섭;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.106-114
    • /
    • 2003
  • The pressure ripple in the delivery port is caused by flow ripple, which is induced by variation of pumping chamber volume. The other reason is the reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume, when the pumping chamber is connected with the outlet volume. In this study, a mathematical model is presented for analyzing discharge pressure ripple, which includes vane detachment, cam ring movement , and fluid inertia effects in V-groove in the side plate. From the analysis and experiment, it was found that V-groove on the side plate, coefficient of spring supporting the cam ring, and average discharge pressure are the main factors of discharge pressure ripple in variable displacement vane pump. The theoretical results, provided in this study, were well agreed with experimental results. The analytical model to estimate the magnitude of pressure ripple in this study is expected to be used f3r the optimal design of the variable displacement vane pump.

Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump (원심펌프의 시동 및 정지에 따른 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

An Experimental Study on the Pumping Performance of the Turbo-Type Disk-Type Drag Pump (터보형 원판형 드래그펌프의 배기특성에 관한 실험적 연구)

  • Hwang Young-Kyu;Heo Joong-Sik;Kwon Myung-Keun;Lee Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.577-580
    • /
    • 2002
  • In this paper, the pumping performance of the disk-type drag pump which works in the outlet pressure range from 4 to 0.001 Torr is studied experimentally. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The flow-meter method is adopted to calculate the pumping speed. Compression ratios and pumping speeds for the nitrogen gas are measured. The present experimental data show the leak-limited value of the compression ratio in the molecular transition region. The rotational speed of the pump is 24,000rpm. The inlet pressures are measured for various outlet pressures of the test pump. The ultimate Pressures for zero throughput are measured for three-stage, two-stage and single-stage disk-type, respectively.

  • PDF

The characteristics of subgrade mud pumping under various water level conditions

  • Ding, Yu;Jia, Yu;Wang, Xuan;Zhang, Jiasheng;Luo, Hao;Zhang, Yu;Chen, Xiaobin
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.201-210
    • /
    • 2022
  • This paper presents a study regarding the influence of various water levels on the characteristics of subgrade mud pumping through a self-developed test instrument. The characteristics of mud pumping are primarily reflected by axial strain, excess pore water pressure, and fine particle migration. The results show that the axial strain increases nonlinearly with an increase in cycles number; however, the increasing rate gradually decreases, thus, an empirical model for calculating the axial strain of the samples is presented. The excess pore water pressure increases rapidly first and then decreases slowly with an increase in cycles number. Furthermore, the dynamic stress within the soil first rapidly decreases and then eventually slows. The results indicate that the axial strain, excess pore water pressure, and the height and weight of the migrated fine particles decrease significantly with a low water level. In this study, when the water level is 50 mm lower than the subgrade soil surface, the issue of subgrade mud pumping no longer exist.

An Experimental Study on the Effect of Performance for Channel of Disk-type Drag Pump Rotors (원판형 드래그펌프 회전자의 채널이 성능에 미치는 영향에 관한 실험적 연구)

  • Kwon, Myoung-Keun;Lee, Soo-Young;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1703-1708
    • /
    • 2004
  • In this study, we are investigated experimentally the pumping characteristics about the pumping channel shapes of disk-type drag pump (DTDP). We are experimented the pumping performance about the rotors which have channel or do not exist. The channel disk-type rotor has spiral channels both upper and lower part, and stator is planar. The planar disk-type rotor hasn't channel and stator has spiral channels both upper and lower part. The flow-meter method is adopted to calculate the pumping speed. Compression ratio and pumping speeds for the nitrogen gas are measured under the inlet pressure range of 0.001 ${\sim}$ 4 Torr. The maximum of compression ratio was about 3300 for three-stage DTDP (channel disk-type rotor), 1000 for four-stage (planar disk-type rotor) and two-stage DTDP (channel disk-type rotor) at zero throughput. The ultimate pressure was $1.6{\times}10^{-6}$ Torr for three-stage DTDP (channel disk-type rotor), $2.5{\times}10^{-6}$ Torr for four-stage DTDP (planar disk-type rotor).

  • PDF

Suggestion of a Evaluation Method for Variation of Concrete Workability According to Pumping Condition through Lab-Scale Test (펌핑 조건에 따른 콘크리트 작업성 변화 실내 평가 방법 제안)

  • Lee, Jung-Soo;Jang, Kyong-Pil;Kwon, Seung-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.413-420
    • /
    • 2020
  • In this study, a new lab-scale test equipment was developed to evaluate the variation of concrete workability after pumping. The equipment was designed to simulate the pressure and shearing applied to concrete during actual pumping. In order to examine the feasibility of evaluating variation of concrete workability through lab-scale test equipment, real-scale pumping tests and lab-scale tests were performed together. The design strength of concrete used in the both tests was 24, 35, and 60MPa, and the length of pipe used in pumping tests was 130, 304, and 518m. The lab-scale tests were performed in consideration of actual pumping conditions(pressure, shearing, and pumping duration time). The workability(slump or slum flow) of concrete was measured before test, after the pumping test, and after lab-scale test. In all tests, workability of all concrete mixtures decreased. In addition, the results of both tests were measured greatly similarly.

A Study on the Pumping Performance of a Helical-type Molecular Drag Pump (헬리컬형 분자 드래그 펌프의 유동특성에 관한 연구)

  • Kim, Do-Haeng;Kwon, Myoung-Keun;Hwang, Young-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2723-2728
    • /
    • 2008
  • The present study is numerically and experimentally performed to reveal the pumping characteristics of a helical-type molecular drag pump (HTDP) in the molecular transition flow region. In the experimental study, the pressures are measured simultaneously at the 5 positions along the helical channel of rotor under various conditions of outlet pressure and throughputs, and nitrogen is used as test gas. The outlet pressure is in the range of 26-533 Pa. As results, the local pressure changes are checked corresponding to the various outlet pressure and throughput of HTDP. In the numerical study, Navier-Stokes equations with slip boundary conditions are employed (Re< 1000, Kn< 0.1). The local pressure distribution and the pumping speed are calculated. The numerical results are compared with the experimental results. The numerically computed value agrees with the experimental data within an error of approximately 5%.

  • PDF

An Experimental Study on Pumping Speed of Disk-Type Drag Pumps for Spiral Channels in Rarefied Gas Flows (희박기체영역에서의 나선형 홈을 가진 원판형 드래그펌프의 배기속도에 관한 실험적 연구)

  • Kwon, Myoung-Keun;Yang, Seoung-Min;Lee, Seung-Jae;Hwang, Young-Kyu;Heo, Joong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2101-2104
    • /
    • 2003
  • Experimental investigations are performed for the rarefied gas flows in a disk-type drag pump (DTDP). The pump considered in this paper consists of grooved spiral channel on rotors and planar stators. The flow-metre method is adopted to calculate the pumping speed. Compression ratio and pumping speeds for the nitrogen gas are measured under the inlet pressure range of $0.001{\sim}4$ Torr. The maximum of compression ratio was about 3300 for three-stage DTDP, 1000 for two-stage and 100 for single-stage DTDP at zero throughput. The number of stage influences the pumping speed of DPDT

  • PDF

A Study on the Pumping Characteristics according to Pumping Method and Rheology Characteristics of Concrete (콘크리트의 레올로지 특성 및 펌핑조건에 따른 펌프압송특성에 관한 연구)

  • Kwon, Dae-Hun;Jung, Woong-Taek;Kim, Hyung-Rae;Jo, Ho-Kyoo;Jeon, Jun-Young;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.99-101
    • /
    • 2011
  • In order to have pumping technology for high speed construction of tall building, study for quantitative evaluation of flow characteristics and pumpability should be conducted. So, this study evaluate the characteristics among the inner pipe pressure, fresh concrete properties and separated mortar through the continuous pumping test. Then it consider of relations between rheological properties and pumpability. In the result of test, it found that there are high interrelationship between the rheological characteristics which represented plastic viscosity and pressure lose by pipe length.

  • PDF