• Title/Summary/Keyword: pumping pressure

Search Result 343, Processing Time 0.026 seconds

Study on Transient Flow in Pipeline with Flexible Tube (탄성관을 삽입한 관로에서의 비정상류에 관한 연구)

  • Kim, Young-Joon;Tsukamoto, Hiroshi
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.825-828
    • /
    • 2005
  • Experimental and numerical study was done to confirm the effect of the flexible tube in pipeline on transient flow oscillation. Experiment was made for a pipeline with and without deformable flexible tube using a single pumping system of main stainless pipe. The wave speeds of main pipe and flexible tube were calculated from the pipe material properties, structures, and boundary conditions. Time dependent pressure fluctuations were calculated for the pipeline using the simple and the Kelvin-Voigt viscoelastic models for the deformation of main pipe and flexible tube. Pressure calculated by the Kelvin-Voigt viscoelastic model showed better agreement with measured one than pressure by the simple model. Experimental and numerical results show that the maximum pressure as well as amplitude of pressure oscillation was decreased by inserting short flexible tube in pipeline. Hence, inserted short flexible tube to pipeline was found to be effective for the suppression of strong pressure oscillation. Moreover, the wave speed in pipe was discussed based on numerical and experimental results.

  • PDF

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

A Study on Ignition Probability and Combustion Characteristics of Low Pressure Direct Injection LPG according to a Function of Ambient Condition (분위기 조건 변화에 따른 저압 직접분사식 LPG의 점화성 및 연소특성 연구)

  • Chung, Sung-Sik;Hwang, Seong-Ill;Yeom, Jeong-Kuk;Jeon, Byong-Yeul
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.32-42
    • /
    • 2016
  • Under part load condition of spark-ignition engine, pumping loss had great effect on engine efficiency. To reduce pumping loss, the study designed spark-ignited engines to make direct spray of gasoline to combustion chamber. In spark-ignited direct-injection engines, ignition probability is important for successful combustion and flame propagation characteristics are also different from pre-mixed combustion. This study designed a visualization testing device to study ignition probability of spark-ignited direct-injection LPG fuel and combustion flame characteristics. This visualization device consists of combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. Ambient pressure, ambient temperature and ambient air flow velocity are important parameters on ignition probability of LPG-air mixture and flame propagation characteristics, and the study also found that sprayed LPG fuel can be directly ignited by spark-plug under proper ambient conditions. To all successful cases of ignition, the study recorded flame propagation image in digital method through ICCD camera and its flame propagation characteristics were analyzed.

An Experimental Study on the Heat Exchangers in the Pulse Tube Refrigerator (맥동관 냉동기 열교환기에 관한 실험적 연구)

  • 남관우;정상권;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.284-291
    • /
    • 2000
  • A basic pulse tube refrigerator has been constructed with extensive instrumentation to study the characteristics of the heat exchanger experimentally under the oscillating pressure and the oscillating flow. This paper describes the sequential experiments with the basic pulse tube refrigerator. The experiments were performed for various cycle frequencies under the square pressure wave forms. First, the heat flux was measured through the cycle at the both cold and warm end heat exchangers without the regenerator. In order to enhance the thermal communication capability of the heat exchanger with the gas at low operating frequencies, a unique design of the triangular shape radial fin concept was applied to the heat exchangers. For the fin heat exchanger, the measured heat flux and the calculated heat flux from the two well-known oscillating heat transfer correlations were compared and discussed. Second, the regenerator was added to the pulse tube to make a basic pulse tube refrigerator configuration. The experiment showed the great impact of the regenerator on the temperature and the heat flux profiles. At the warm-end, the cyclic averaged heat flux had its maximum value at the specific operating frequency. The paper presents the explanation of the surface heat pumping effect as well as the experimental data.

  • PDF

Pulsation Dampener for Diaphragm Metering Pump (다이아프램 정량펌프의 맥동감쇄 장치)

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1143-1147
    • /
    • 2004
  • A mechanical type pulsation dampener for the diaphragm metering pump has been developed. The pulsation pressure is an inevitable phenomenon for the positive displacement pump such as cam operated or solenoid operated metering pump. The pulsation pressure of the metering pump could be the noise source and would be harmful for the piping system which delivers hydraulic fluid. Developed pulsation dampener consists of three coil springs which have different spring constant and height each other. Depending on pressure magnitude of the piping system, total hydraulic pressure on damping diaphragm which compresses coil springs will be varied. Force equilibrium of the pulsation dampener will be set by manual by adjusting the compressed coil spring height. During the discharge stroke, pulsation dampener stores potential energy that is released as the pumping diaphragm back to an initial position during the suction stroke.

  • PDF

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

Analysis of Cylinder Compression Pressure Uniformity and Valve Timing by Start Motor Current and Cylinder Pressure during Cranking (기동 모터의 전류 파형과 실린더 압력 분석을 통한 기관의 압축 압력 균일도 및 밸브 개폐 시점 이상 여부 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.133-138
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Therefore, uniformity of compression pressure and valve timing became one of most important engine design and production standard. Conventional method to evaluate compression pressure uniformity is to measure each cylinder pressure by mechanical pressure gage during cranking. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and also causes high manhour and cost. To check valve timing, related FEAD parts should be disassembled and timing mark should be checked manually. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. With this new methodology, possibility to detect leaky cylinder and wrong valve timing was observed.

Simulation of the gas exchange process for single-cylinder 4-stroke cycle spark ignition engine (단기통 4사이클 스파아크 점화기관 흡.배기 과정의 시뮬레이션)

  • 윤건식;유병철
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.7 no.1
    • /
    • pp.24-34
    • /
    • 1985
  • The study of unsteady gas exchange processes in the inlet and exhaust systems of the single-cylinder 4-stroke cycle spark ignition engine is presented in this paper. The generalized method of characteristics including friction, heat transfer, change of flow area and entropy gradients was used for solving the equations defining the gas exchange process. The path line calculation was also conducted to allow for calculation of the gas composition and entropy change along the path lines, and of the variable specific heat due to the change of temperature and composition. As the result of the simulation, the properties at each point in the inlet and exhaust pipe, pressure and temperature in the cylinder, and charging efficiency were obtained. Pumping loss and residual gas fraction were also computed. The effect of engine speed, exhaust and inlet pipe length on the pumping loss and charging efficiency were studied showing that the results were in agreement with what has been known from experiments.

  • PDF

Leakage and Rotordynamic Analysis of Spiral-Grooved Pump Seal Based on Three-Control-Volume Theory (나선 홈 펌프 실의 누설 및 로터다이내믹 해석)

  • Ha, Tae-Woong;Lee, An-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.14-22
    • /
    • 2003
  • In this paper the leakage prediction md rotordynamic analysis of an annular seal with a smooth rotor and spiral-grooved stator is performed. For the development of a theoretical model, the three-control-volume analysis of the circumferentially-grooved seal is expanded by considering pressure reduction due to the pumping effect of spiral groove and pressurized flow through the spiral groove. Validation on the present analysis is achieved by comparisons with available experimental data. For the leakage prediction the present analysis generally shows a reasonable agreement with experimental results. Rotordynamic coefficients for rotor speed with spiral angles show same trend, but the magnitudes of rotordynamic coefficients yield differences between analysis and experimental results.