• Title/Summary/Keyword: pump room size

Search Result 12, Processing Time 0.024 seconds

Determination of Sizes of the Pump Rooms in Korean Nuclear Power Plants (한국형 원자력발전소 펌프실 면적 산정 방안)

  • Lee, Hyo-Sung;Koh, Churl-Kyun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.9 no.2
    • /
    • pp.36-41
    • /
    • 2013
  • For areas installed with one pump, the trend for expected sizes of pump room areas is observed once pump power and floor dimensions are provided. However, these pump rooms with auxiliary charging pumps, turbine driven auxiliary feedwater pumps, and pump rooms with a separate valve room have unique ways to determine the pump room area. No definite trends are identified for areas installed with two pumps using pump power and floor dimensions. The relationship between pump power and floor dimensions is also unable to be found.

  • PDF

An Experimental Study on the Performance of Inverter Heat Pump with a Variation of Frequency and Capillary Size

  • Choi, Jong-Min;Kim, Yong-Chan;Kim, Jong-Yup
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.27-35
    • /
    • 1998
  • An experimental study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of the inverter heat pump with the rated cooling capacity of 4,141 W(3,550kcal/h) was measured with a variation of frequency, indoor and outdoor temperature, and length of capillary tube in the psychrometric test room. As a base case, the inverter heat pump with the standard capillary length of l,000mm(optimum size for the frequency of 60Hz) and ASHRAE Test condition "A" was tested by varying frequency from 30Hz to 80Hz. Then, the optimum cycles were investigated by varying the length of capillary tube at each frequency level of 30, 60 and 80Hz. Based on the experimental data, the change of system characteristics between the optimum and the base case were analyzed for each selected frequency level. Generally, for low frequency level(30Hz), the longer length of the capillary tube compared with the standard size showed the higher energy efficiency ratio(EER), while for high frequency level(80Hz) the shorter length of the capillary tube showed the higher EER.

  • PDF

An experimental study on the performance of inverter heat pump with a variation of frequency and capillary size (인버터 열펌프의 주파수 및 모세관 길이 변화에 따른 시스템 성능특성의 실험적 연구)

  • Choi, J.M.;Kim, Y.C.;Kim, J.Y.;Bae, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.64-72
    • /
    • 1997
  • An experiment study was performed to investigate the optimum cycle of an inverter heat pump as a function of frequency. The performance of the inverter heat pump with the rated cooling capacity of 4141W(3550kcal/h) was measured with a variation of frequency, indoor and outdoor temperature, and length of capillary tube in the psychrometric test room. As a base case, the inverter heat pump with the standard capillary length of 1000mm which was optimum size for the frequency of 60Hz and ARHRAE Test condition A was tested by varying frequency from 30Hz to 80Hz. Then, the optimum cycle was invesigated by varying the length of capillary tube at each frequency levels of 30, 60 and 80Hz. Based on the experimental data, the change of system characteristics between the optimum and the base case were analyzed for each selected frequency levels. Generally, for low frequency level(30Hz), the longer length of the capillary tube compared with the standard size showed the higher EER, while for high frequency level(80Hz) the shorter length of the capillary tube showed the higher EER.

  • PDF

Review on innovative small refrigeration methods for sub-Kelvin cooling

  • Dohoon, Kwon;Junhyuk, Bae;Sangkwon, Jeong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.71-77
    • /
    • 2022
  • Sub-Kelvin cooling has been generally demanded for the fields of low temperature physics, such as physical property measurements, astronomical detection, and quantum computing. The refrigeration system with a small size can be appropriately introduced when the measurement system does not require a high cooling capacity at sub-Kelvin temperature. The dilution refrigerator which is a common method to reach sub-Kelvin, however, must possess a large 3He circulation equipment at room temperature. As alternatives, a sorption refrigerator and a magnetic refrigerator can be adopted for sub-Kelvin cooling. This paper describes those coolers which have been developed by various research groups. Furthermore, a cold-cycle dilution refrigerator of which the size of the 3He circulation system is minimized, is also introduced. Subsequently, a new concept of dilution refrigerator is proposed by our group. The suggested cooler can achieve sub-Kelvin temperature with a small size since it does not require any recuperator and turbo-molecular vacuum pump. Its architecture allows the compact configuration to reach sub-Kelvin temperature by integrating the sorption pump and the magnetic refrigerators. Therefore, it may be suitably utilized in the low temperature experiments requiring low cooling capacity.

Hydraulic Constant Frequency Generation System Driven by Main Engine for Small Fishing Boat - Hydraulic Pump Control Type - (소형 어선용 주기구동 유압식 고주파수 발전장치에 관한 연구 ( 1 ) - 유압펌프 제어방식 -)

  • Lee, Il-Yeong;Park, Sang-Gil;Jeong, Yong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 1988
  • An electrical power generation system driven by main engine shaft, briefly SG system for middle or small size fishing boat is studied experimently. In the SG system, power transmission is performed by a variable displacement hydraulic pump driven by the main engine and a constant displacement hydraulic motor. It was verified that the SG system enabled the generation of electrical power with constant frequency regardless main engine speed. In the SG system, setting reference frequency, sensing generator output frequency and setting controller parameters are performed by performed by programming in a microcomputer, so a countermeasure for physical situations of control object is very easy. Futhermore, the SG system has following features; low initial installation cost, wide freedom of installation in engine room, advantage of application in existing ships, especially fishing boat with hydraulic fishing equipments.

  • PDF

Development of Portable Cardiopulmonary Support System (이동형 심폐보조시스템의 개발)

  • Lee, Hyuk-Soo;Min, Byoung-Goo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.1
    • /
    • pp.94-99
    • /
    • 2007
  • Many cases of acute cardiac shock and cardiac arrest in emergency room and ICU have been increasing. In this case, ECMO with centrifugal pump has been used generally. However, due to the heavy weight and big size, the system is not adequate for emergency cases. And other defects of this system are that membrane oxygenator's pressure is high and blood are exposed to the air. There was some tries of ECMO using pulsatile pump, but it was found that the weak point of these system is high peak pressure and hemolysis. The mechanism of twin pulsatile pump is that Membrane oxygenator Outlet Pump(MOP) make negative pressure when Membrane oxygenator Inlet Pump(MIP) provides high positive pressure, and the negative pressure will decrease positive pressure of Membrane Oxygenator. Our group analyzed this advantage through In-Vitro and 12 Cases In-Vivo test.

A Study on Typical Rates of Water-use for Primary School, Middle School and High School Facilities (초.중.고등학교 시설의 급수 사용량에 대한 연구)

  • Kim, Kyu-Saeng
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.802-807
    • /
    • 2008
  • A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows; 1) On the whole, typical rates of water-use was founded out 15 L/stu. d in pirmary school, 10 L/stu. d in middle school and 30 L/stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour's in primary school, 7 hour's in middle school and 8 hour's in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking peak load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.

A Study on the Manufacture of the Cu Powder from Electrochemical Recovery of Waste Rinse Water at the Cu Electroplating Process (동 도금 수세 폐수로부터 구리 분말 제조에 관한 연구)

  • 김영석;한성호
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.194-199
    • /
    • 2003
  • Polarization measurements were peformed to investigate the electrochemical behavior of copper ions and limiting current density in waste rinse water from copper electroplating processes. A newly designed cyclone type electrolyzer was tested to recover the copper powder. Synthetic solutions were prepared using analytical grade $CuSO_4$ to the desired waste water concentration and pH was adjusted with $H_2$$SO_4$. Electrowinning was peformed at room temperature and the solution was cycled with a pump. Results showed that more than 99 percent of Cu was recovered and the size of the recovered Cu powder ranges from 0.1 - $0.5\mu\textrm{m}$. The chemical composition of the Cu powder mainly consists of $Cu_2$O and Cu and can be easily reduced to pure Cu powder.

Effects of Yittrium and Manganese on the PTCR Barium Titanate Synthesized by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 합성한 PTCR Barium Titanate에 미치는 Y와 Mn의 효과)

  • 김복희;이정형;윤연현;최의석;정웅기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1169-1177
    • /
    • 1995
  • Barium nitrate and yittrium nitrate were dissolved into distilled water. Titaium hydroxide precipitated from titanium chloride with NH4OH was dissolved into nitric acid. Each aqueous solution was mixed for 12 hr in the composition of Ba1-xYxTiO3 (x=0.1∼0.6) and the concentration of mixed solution was 0.1 mol/ι. The mixed solution was sprayed with an ultrasonic atomizer and carried into an electric furnace which was kept at 900∼1000$^{\circ}C$ and pyrolyzed. Pyrolyzed powders were collected on the glass filter with vacuum pump. Aqueous Mn solutiion was added into the synthesized powders, mixed with ultrasonic vibration and sintered at 1300∼1400$^{\circ}C$. Synthesized powders were characterized with SEM, XRD, DT-TGA, and BET. Microsture and resistivity of sintered body were investigated with SEM and multimeter. The results of this experiment were as follows; 1) Yittrium dooped BaTiO3 powders were synthesized above 950$^{\circ}C$. 2) The average particle sizes of powders from BET specific surface area and SEM were 0.045$\mu\textrm{m}$, 0.046$\mu\textrm{m}$ respectively. The particle size distribution was narrow in the range of 0.1∼1.0$\mu\textrm{m}$ from SEM. 3) Room temperature resistivity and pmax/pmin of 0.4 mol% Y doped specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 102∼3 respectively. 4) Room temperature resistivity and pmax/pmin of 0.4 mol% Y and 0.04 at% Mn added specimen which was sintered at 1375$^{\circ}C$ were 102∼3 (Ω$.$cm) and 106∼7 respectively. 5) Grain growth was inhibited with addition of Y2O3 and enhanced in addition of Mn by 0.05 atm%.

  • PDF

A study on odor and ventilation in waste treatment facilities (폐기물 처리시설에서의 악취 및 환기에 관한 연구)

  • Seo, Byung-Suk;Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.