• 제목/요약/키워드: pump operating conditions

검색결과 257건 처리시간 0.033초

열펌프의 성능 최적화에 관한 연구 (Optimization of Heat Pump Systems)

  • 최종민;윤린;김용찬
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 2007
  • An expansion device plays an important role in optimizing the heat pumps by controlling refrigerant flow and balancing the system pressures. Conventional expansion devices are being gradually replaced with electronic expansion valves due to increasing focus on comfort, energy conservation, and application of a variable speed compressor. In addition, the amount of refrigerant charge in a heat pump is another primary parameter influencing system performance. In this study, the flow characteristics of the expansion devices are analyzed, and the effects of refrigerant charge amount on the performance of the heat pump are investigated at various operating conditions. Cooling capacity of the heat pump system is strongly dependent on load conditions. The heat pump system is very sensitive with a variation of refrigerant charge amount. But, the performance of it can be optimized by adjusting the flow rate through expansion device to maintain a constant superheat at all test conditions.

  • PDF

하천수 열원 2단압축 열펌프의 최적 중간압에 관한 실험적 연구 (An Experimental Study on the Optimal Intermediate Pressure of a 2-Stage Compression Heat Pump Using River Water)

  • 박차식;정태훈;주영주;김용찬
    • 설비공학논문집
    • /
    • 제21권6호
    • /
    • pp.333-339
    • /
    • 2009
  • The objective of this study is to predict optimal intermediate pressure of a 2-stage compression heat pump system using river water. To determine the maximum performance of the 2-stage compression heat pump system, the experimental evaluations on the 2-stage compression cycle were carried out under various operating conditions. Electronic expansion valves were applied to control intermediate pressure and superheat. Based on the experimental data, an empirical correlation for predicting optimal intermediate pressure which considering cycle operating parameters was developed. The present correlation was verified by comparing the predicted data with the measured data. The predictions showed a good agreement with the measured data within a relative deviation of ${\pm}4%$ at various operating conditions.

다중 흡수정을 갖는 펌프장 모델의 유동균일성 해석 (Numerical Analysis on the Flow Uniformity in a Pump Sump Model with Multi Pump Intake)

  • 최종웅;최영도;임우섭;이영호
    • 한국유체기계학회 논문집
    • /
    • 제12권4호
    • /
    • pp.14-22
    • /
    • 2009
  • The head-capacity curves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite basin with no close walls or floors and with no stray currents. Therefore, flow into the pump intake is with no vortices or swirling. However, pump station designers relying on these curves to define the operating conditions for the pump selected sometimes meet the reductions of capacity and efficiency, as well as the increase of vibration and additional noise, which were caused by air-entered flow in the pump station. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump of pump station model. Multi-intake sump model with anti-submerged vortex device basin is designed and the characteristics of submerged vortex is investigated in the flow field by numerical simulation. In this study, a commercial CFD code is used to predict the vortex generation in the pump station accurately. The analysed results by CFD show that the vortex structure and effect of anti-submerged vortex device are different at each pump intake channel.

열펌프 건조 해석 모델을 이용한 측정 결과의 분석 (Investigation of Experimental Results Using the Drying Model for a Heat Pump Dryer)

  • 이공훈;김욱중;김종률;이상열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2268-2273
    • /
    • 2008
  • The drying model has been used to obtain the fundamental information required to design the heat pump dryer with the simple thermodynamic model. In the model, the input conditions are crucial to obtain the acceptable results. The model includes one-stage heat pump cycle, simple drying process using the drying efficiency. The drying efficiency is defined with the conditions of inlet and outlet in the dryer. The experiment has been carried out in the pilot dryer with one-stage heat pump cycle. Refrigerant 134a is used in the heat pump cycle. In the dryer, some of drying air flows through the heat pump system and the rest of air bypasses the heat pump system and circulates through the drying chamber. Some operating conditions from the pilot dryer are used as input conditions of the model and the results are compared with experimental results for the validation.

  • PDF

수열원 냉난방 동시형 히트펌프 시스템의 실외 열교환기 유량제어를 통한 성능개선에 관한 연구 (A Study on the Performance Improvement of a Simultaneous Heating and Cooling Water Source Heat Pump System by Controlling of the Refrigerant Flow Rate in an Outdoor Unit)

  • 배흥희;이동혁;이상헌;김병순;안영철
    • 설비공학논문집
    • /
    • 제25권3호
    • /
    • pp.131-136
    • /
    • 2013
  • The present study has conducted cycle design and control technology of a water source VRF heat pump system. Previously, study of a simultaneous heating and cooling in an air source VRF heat pump system has been conducted. However, performance data and design methods for simultaneous heating and cooling in a water source VRF heat pump system are limited in the literature, due to various system parameters and operating conditions. In this study, the operating characteristics and performances of a simultaneous heating and cooling heat pump system are carried out, in simultaneous operation modes. Control logics of an EEV are developed for flow rate control to the outdoor unit, and are verified. When the control logics are applied, the simultaneous cooling and heating performances are sufficiently achieved, and system COPs are increased by up to 23.4%.

퍼지 subtractive 클러스터링 기법을 이용한 좌심실보조장치 모델링 및 흡입현상 검출 (Modeling of Left Ventricular Assist Device and Suction Detection Using Fuzzy Subtractive Clustering Method)

  • 박승규;최성진
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.500-506
    • /
    • 2012
  • 좌심실보조장치의 모델과 안전한 장치 구동을 위한 흡입현상 검출을 위한 방법을 제안한다. 좌심실보조장치인 축류혈액펌프는 심장에 문제가 있는 환자를 보조하기 위하여 사용되어 왔다. 축류혈액펌프는 비맥동성 펌프이며, 맥동성 펌프에 비하여 작은 크기와 효율성과 같은 장점이 있으나, 안전한 펌프 운전 조건을 결정하는 데 어려움이 있다. 축류혈액펌프는 정상상태와 흡입상태와 같은 상이한 펌프 동작 상태를 가지며, 이는 좌심실에서 흡입현상 발생여부에 좌우된다. 퍼지 subtractive 클러스터링 기법을 이용하여, 이와 같은 동작 특성을 가지는 축류혈액펌프 모델을 개발하며, 개발한 펌프 모델을 이용하여 흡입현상 발생 전후의 펌프 혈류량을 추정한다. 또한 퍼지 subtractive 클러스터링 기법을 이용하여 좌심실에서 흡입현상 발생여부를 감지할 수 있는 흡입현상 검출 모델을 개발한다.

진동응답 측정에 의한 이중 벌류트형 양흡입 원심펌프의 동적특성 (Dynamic Characteristics of the Double Volute Double Suction Centrifugal Pump Using Measured Vibration Data)

  • 최복록;박진무
    • 소음진동
    • /
    • 제10권3호
    • /
    • pp.500-507
    • /
    • 2000
  • Dynamic forces due to mechanical and hydraulic related causes are always exerted on operating turbomachinery such as centrifugal pumps. To ensure the safety and the reliability of the pump. the magnitudes of the vibration must be kept within an acceptable limit. The focus of this paper is on the identification of the vibration behavior and the quantitative analysis of the hydraulic excitation forces. As the structure becomes more complex finite element analysis is essential to accurately predict the vibration characteristics and the excitation forces, This paper presents an experimental and analytical technique to find and solve to vibration problems in double volute double suction centrifugal pump. Measured vibration data due to the dynamic forces are presented and individual causes are identified, finally excitation forces of the pump are inversely estimated at each frequency on operating conditions.

  • PDF

저소음 대형 캐비테이션 터널 구동 펌프 개발 (Development of the Driving Pump for the Low Noise Large Cavitation Tunnel)

  • 안종우;김건도;김기섭;이진태;설한신
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.370-378
    • /
    • 2008
  • It is reported to develop the driving pump for the Low Noise Large Cavitation Tunnel(LOCAT) which is under construction at Maritime & Ocean Engineering Research Institute(MOERI). For low background noise condition of the LOCAT, it is crucial not only the best pump efficiency but also no cavity occurrence at any operating conditions. Design condition of the pump is determined by considering the required pump headrise, flow quantity, shaft rotation velocity and pump diameter. Performance analysis of the pump is conducted using commercial CFD codes ($BladeGen^+$, CFX-10), and the predicted results are verified by a series of model tests. Cavity was not observed at any operating condition in the model test, which were conducted at the midium cavitation tunnel of MOERI. The optimum pump for LOCAT, named as LP-11, was successfully developed through a series of pump design processes composed of blade design, performance analysis and model test.

회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성 (A study on the transient characteristics during speed up of inverter heat pump)

  • 황윤제;김호영
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

선박 유압공급 장치용 사판식 유압 피스톤 펌프의 구조적 안정성에 관한 연구 (A Study on the Structural Stability of the Swash Plate Piston Pump for Marine Hydraulic Power Supply)

  • 곽범섭;임종학;이인욱;이중섭;이호성;송철기
    • 한국기계가공학회지
    • /
    • 제20권4호
    • /
    • pp.24-30
    • /
    • 2021
  • In this paper, a structural stability analysis of the swash plate hydraulic piston pump installed on hydraulic supply systems in marine vessels is presented. In order to verify the integrity of the pump design, a standard structural analysis technique based on the finite element method has been applied for various operating and boundary conditions. For the maximum operational torque (223 N·m) at 5°, 10°, and 15° of the swash plate angle, the maximum deformation, equivalent stress and safety factor are evaluated. The analytical results show that under current operating conditions, the structural reliability of the design has been confirmed.