• Title/Summary/Keyword: pump energy

Search Result 1,441, Processing Time 0.026 seconds

The Experimental Study of Ice Thermal Storage for Falling Film Type - Sprint Coil Type - (스파이럴형 냉동코일을 사용한 유하액막식 빙축열조에서 열전달현상에 관한 실험적연구)

  • Lee, C.M.;Kim, D.H.;Cho, N.C.;Kim, I.G.;Park, S.R.;Choi, K.K.;Yim, C.S.
    • Solar Energy
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 1999
  • The heat transfer characteristics of ice storage system of falling film type using sprial coil is investigated. The experimental facilities consisted of a water tank, spiral coils located above the tank, an upper water distributor, and a circulating water pump. Water is distributed uniformally over the spiral coils and it forms falling thin films. In the process of freezing, ice is formed on outside of the spiral coils through recirculation of tank water. In the process of melting, ice is melted with return water from the heat load, while the water is chilled again and drops into the tank. The results of falling film type of ice thermal storage system are as follows. The highly efficient shower flowrates for icing is near $3{\ell}/min$. Icing rates on spiral coils is rosed while brine flowrates is increased. Lower brine temperature is not only increased freezing rates but. also become higher total icing weight and overall heat transfer coefficient. Smaller shower flowrates is obtained lower water temperature on outlet for a long time. The amounts of quantity can be detected more accurately by measuring storage tank weight.

  • PDF

PUMP DESIGN AND COMPUTATIONAL FLUID DYNAMIC ANALYSIS FOR HIGH TEMPERATURE SULFURIC ACID TRANSFER SYSTEM

  • Choi, Jung-Sik;Shin, Young-Joon;Lee, Ki-Young;Yun, Yong-Sup;Choi, Jae-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.363-372
    • /
    • 2014
  • In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI) thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD) analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz). However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, $Teflon^{(R)}$) as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K ($260^{\circ}C$), even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.

Preliminary Study of a Turbopump Pyro Starter (터보펌프 파이로 시동기 기초연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.2
    • /
    • pp.74-80
    • /
    • 2008
  • The feasibility study into the development of turbine spinners, which start up the turbo-pump, has been carried out and the design requirements and parameters ranges have been presented. Turbine spinners use the solid propellant as such composite propellant based AN compound with high energy plasticizers, coolants, and phase stabilizer which relieves a sensible volume change due to the phase transformation of AN near room temperature. Propellants which have a homing rate of $0.2{\sim}0.3\;mm/s$ and pressure exponent ranged from 0.3 to 0.6, showed stable burn-out in the standard motor tests. Both the magnitude of ignition energy and its thermal transfer mechanism have been proved to have a tangible effect on the ignition of the pyre starter, and the results of this study showed that a flame temperature of 1400K would be quite adequate to get a stable ignition for the AN composite propellant.

Flow Analysis of Facade Integrated Solar Water Heater with Natural Circulation (파사드 일체형 자연순환 태양열온수기 유동해석)

  • Baek, Nam-Choon;Lee, Wang-Je;Lim, Hee-Won;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.167-172
    • /
    • 2016
  • Purpose: The solar water heater with natural circulation has been used for several decades in the world as it is automatically operated without a pump and controller and is easy to maintain and repair. After the subsidy was offered from 2012, the solar water heater with natural circulation is becoming increasingly popular in Korea. Recently, the development of a wall-integrated solar water heater, which improves the applicability of buildings and prevents the overheating in the summer, is being developed. On the other hand, the design and performance evaluation data of solar water heaters are very inadequate, and analysis of heat and flow is required to develop a new type of solar water heater. Method: Therefore, in this study, we proposed a new simplified system analysis model that reflects heat and pressure loss from the test results of KS B ISO 9806-1 (Solar collector test method), assuming that the collector is a simple pipe system, the validity of which was verified through experiments. Result: As a result, first, the RMSE of the system circulation flow rate and the average temperature of the inlet and outlet of the collector according to the experimental results and the simulation are 0.05563 and 0.88530, respectively, which are very consistent. Secondly, the mass flow rate is increased linearly with the increase of the solar radiation, and the mass flow rate is 0.0104 ~ 0.0180kg/s in the range of $200{\sim}380W/m^2$ of solar irradiance. Compared with the test flow rate 0.0764kg / s of the test collector, it showed a level of less than 20%.

A Study on the Control of the Temperature and Relative Humidity in Greenhouse by Adjusting the Amount of Natural Ventilation and Fog Spray Quantity (자연환기량과 포그분무량 조절에 의한 온실 온습도의 동시제어 기법 연구)

  • Kim, Youngbok;Sung, Hyunsoo;Hwang, Seungjae;Kim, Hyeontae;Ryu, Chanseok
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.5
    • /
    • pp.31-50
    • /
    • 2016
  • To develope a greenhouse fog cooling system to control the temperature and relative humidity simultaneously to the target value, a theoretical analysis and experiments were done. The control process includes the measuring of environmental variables, setting and coding of the water and heat balance equations to maintain the target temperature and relative humidity in greenhouse, calculating of the open level of the greenhouse roof window that governs the natural ventilation and spray water quantity, and operating of the motor to open/close the roof window and pump to spray for water. The study results were shown to be very good because the average air temperature in the greenhouse was kept to be about $28.2^{\circ}C$ with the standard deviation of about $0.37^{\circ}C$ compared to the target temperature of $28^{\circ}C$ and the average relative humidity was about 75.2% compared to the target relative humidity was 75% during the experiments. The average outside relative humidity was about 41.0% and the average outside temperature was $27.2^{\circ}C$ with the standard deviation of about $0.54^{\circ}C$. The average solar intensity in the greenhouse was 712.9 W. The wind velocity of outside greenhouse was 0.558 m/s with the standard deviation of 0.46 m/s.

Model Based Hardware In the Loop Simulation of Thermal Management System for Performance Analysis of Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지 특성 해석을 위한 열관리 계통 모델 기반 HILS 기초 연구)

  • Yun, Jin-Won;Han, Jae-Young;Kim, Kyung-Taek;Yu, Sang-Seok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • A thermal management system of a proton exchange membrane fuel cell is taken charge of controlling the temperature of fuel cell stack by rejection of electrochemically reacted heat. Two major components of thermal management system are heat exchanger and pump which determines required amount of heat. Since the performance and durability of PEMFC system is sensitive to the operating temperature and temperature distribution inside the stack, it is necessary to control the thermal management system properly under guidance of operating strategy. The control study of the thermal management system is able to be boosted up with hardware in the loop simulation which directly connects the plant simulation with real hardware components. In this study, the plant simulation of fuel cell stack has been developed and the simulation model is connected with virtual data acquisition system. And HIL simulator has been developed to control the coolant supply system for the study of PEMFC thermal management system. The virtual data acquisition system and the HIL simulator are developed under LabVIEWTM Platform and the Simulation interface toolkit integrates the fuel cell plant simulator with the virtual DAQ display and HIL simulator.

Themodynamic Characteristics of a Two-Stage Binary Absorption Cycle (2단(段) 2원(元) 흡수(吸收)사이클의 특성(特性)에 관(關)한 연구(硏究))

  • Lee, Y.H.;Rie, D.H.;Kashiwagi, T.;Seo, J.Y.
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.29-38
    • /
    • 1995
  • This paper concerns the study of a two-stage binary absorption cycle employing the refrigerant/absorbent combinations of $LiBr/H_2O$ and $NH_3/H_2O$. This cycle consists of coupling two single-effect absorption cycles so that the first stage absorber and condenser produces heating water to evaporate refrigerant in the evaporator of the second stage. The effect of operating variables such as evaporator temperature, condenser and absorber temperature, and generator temperature on the coefficient of performance and temperature lift have been studied for two-stage binary absorption heat pump systems. It is found that this cycle has a large temperature lift at $105^{\circ}C$ of optimum generator temperature to obtain $50^{\circ}C$ of condenser temperature.

  • PDF

Experimental Study on Characteristics of Evaporation Heat Transfer of CO2 in a Smooth Tube (평활관에서 이산화탄소의 증발열전달 특성에 관한 실험연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.181-186
    • /
    • 2007
  • In order to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$, basic experiment on the evaporation heat transfer characteristics in a horizontal smooth tube was performed. The experimental apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200\;kg/m^2s$), heat fluxes ($10{\sim}80\;kW/m^2$) and saturation temperatures ($-5{\sim}5^{\circ}C$). With the increase of quality, the evaporation heat transfer coefficient decreased. With the increase of heat flux, the evaporation heat transfer coefficient increased. Significantly change of the heat transfer coefficient was observed at any heat flux and mass flux. With the increase of saturation temperature, the heat transfer coefficient increased. Pressure drop increased with the increase of mass flux and the decrease of saturation temperature.

Oxygen Transfer Efficiencies of A Single Spiral Roll Aeration System by the Off-gas Method (Off-gas Analyzer를 이용한 하수처리장 단일선회류 방식 포기시스템 산소전달 효율의 평가)

  • Park, Bo Hwa;Ko, Kwang Baik;Park, Jae Han;Lim, Se Ho;Shin, Dong Rok;Yun, Hye Jung;Lee, Ji Young;Moon, Tae Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.534-539
    • /
    • 2006
  • The supply of oxygen for aeration is the largest energy consumer at activated sludge wastewater treatment plants. Replacement of less efficient aeration systems with fine pore aeration devices can save up to 50 percent of aeration energy costs. The purpose of this study was the diagnosis and evaluation of a domestic wastewater aeration system by the off-gas method which had been studied by US EPA and ASCE. For this study, an off-gas analyzer and its hood were made to collect off-gas. Also, a vacuum pump was connected to the analyzer to make suction of off-gas. Experiments were conducted at a domestic activated sludge wastewater treatment plant which had a single spiral roll aeration system installed with P.E tube diffuser. Data on OTE(f), SOTE(pw), OUR, and air flow rate were obtained from these experiments. In case of replacing an aeration system, it is recommended that it should be replaced with perforated membrane disc or ceramic disc fine bubble diffusers installed in a full floor coverage or grid pattern.

A Study of Cooldown Performance of Shutdown Cooling System of Korea Next Generation Reactor (차세대 원자로 정지냉각계통의 냉각 성능에 대한 연구)

  • 유성연;이상섭
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 1999
  • The standardized Korea Next Generation Reactor (KNGR) NSSS has developed in the basis of the ABB-CE System 80+ design concept. In this study, several regulatory requirements for the KNGR shutdown cooling system (SCS) operation are investigated. The purpose of this study is to establish the technical self-reliance for SCS design by supporting fundamental data such as SDCHX effective area and reactor CCW flow rate. Thermal power of KNGR would be increased to about 4,000 $MW_{th}$ in comparison with thermal power 2.825 $MW_{th}$ of UCN 3&4, therefore, SCS design data shall b recalculated by using the KDESCENT Code, which could evaluate cooling capability of SCS. It is found that SCS minimum flow rate is able to remove the primary sensible heat. Reviewing the major components such as heat exchanger, pump, value, and operating procedure, it is concluded as follows.

  • PDF