• Title/Summary/Keyword: pump as turbine

Search Result 103, Processing Time 0.027 seconds

Development of 1MW Organic Rankine Cycle System for Industrial Waste Heat Recovery Put English Title Here (산업배열회수용 1MW급 유기랭킨 사이클 시스템 개발)

  • Cho, H.C.;Park, H.S.;Lee, Y.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.776-781
    • /
    • 2001
  • To enhance thermal efficiency of thermal facility through recovery of low and medium temperature waste heat, 1MW organic Rankine cycle system was designed and developed. The exhaust gases of $175^{\circ}C$ at two 100MW power plants in pohang steel works were selected as the representative of low and medium temperature waste heat in industrial process for the heat source of the organic Rankine cycle system. HCFC-123, a kind of harmless refrigerant, was chosen as the working fluid for Rankine cycle. The organic Rankine cycle system with selected exhaust gases and working fluid was designed and constructed. From the operation, it was confirmed that the organic Rankine cycle system is available for low and medium temperature waste heat recovery in industrial process. The optimum operating manuals, such as heat-up of hot water, turbine start-up, and the process of electric power generation, were derived. However, electric power generated was not 1MW as designed but only 670kW. It is due to deficiency of pump capacity for supply of HCFC-123. So it is necessary to increase the pump capacity or to decrease the pressure loss in pipe for more improved HCFC-123 supply.

  • PDF

A Study on Effect of Flow Characteristics for Turbine Impeller Shape (Turbine Impeller 형상이 유동특성에 미치는 영향에 관한 연구)

  • Jeon, Eon-Chan;Youn, Gi-Ho;Kang, Chang-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.36-43
    • /
    • 2014
  • Recently, research has been conducted to develop the ORC (organic Rankine cycle), to recover waste heat from facilities such as industrial plants ultimately to create mechanical or electrical energy. The ORC system consists of a heat exchange, a condenser, a pump and a boiler. In this paper, 84 flow analyses were conducted with 21 cases and three variables, i.e., a number of large wings, a number of small wings, and RPMs. R245fa was used as a refrigerant. The flow cavitation phenomenon was investigated through a flow analysis, and a flow stream analysis was conducted.

A New Concept of Hydraulic Design of Water Turbine Runners

  • Vesely, Jindrich;Pochyly, Frantisek;Obrovsky, Jiri;Mikulasek, Josef
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.383-391
    • /
    • 2009
  • Vibrations at different frequencies with a different intensity as well as a pressure pulsation with different parameters are two phenomena which can be observed at different water turbines. Due to the vibration and the pressure pulsation some restrictions of water turbine operation range are applied. Similar problems with the efficiency level in a wide water turbine operation range are the basic problems which are solved for ages. A theoretical and practical solution of the above mentioned problems is very much time and money consuming. The paper describes a new theoretical solution of the excitation and pressure pulsation decrease as well as extension of the operational range with high efficiency level. The new concept to decrease the vibrations and pressure pulsations is based on a heterogeneous runner blade geometry generation. The new concept of the runner geometry design was numerically tested at a low specific speed pump turbine, see Fig. 1, and basic points of the concept are presented in this paper.

Optimal Condition of Specific Impulse for a Liquid Rocket Engine with Film Cooling (막냉각이 적용된 액체로켓엔진의 비추력 최적조건)

  • Cho, Won-Kook;Park, Soon-Young;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • An analysis has been conducted of the optimal condition to maximize the specific impulse for a liquid rocket engine with film cooling. The present engine performance has been compared with the published conceptual design to be verified satisfactorily accurate. The optimal combination of film coolant flow rate and the regenerative cooling capacity has been found for maximum specific impulse. The optimal fuel pump pressure increases and the optimal film coolant flow decreases for a larger thrust engine. Higher turbine inlet temperature increases both the fuel pump pressure and the film coolant flow rate as the optimal condition. The coking temperature has the same qualitative effect as the turbine inlet temperature.

  • PDF

Simulation of the Kalina cycle for a Geothermal Power Generation (지열발전을 위한 칼리나 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-Sung;Chang, Ki-Chang;Lee, Young-Soo;Park, Seong-Ryong;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.782-787
    • /
    • 2008
  • The Kalina cycle simulation study was carried out for a preliminary design of a geothermal power generation system. The Kalina cycle system can be used for the utilization of a low-temperature heat sources such as geothermal and industrial waste heat that are not hot enough to produce steam. The sea/river water can be considered as a cooling media. A steady-state simulation model was developed to analyze and optimize its performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump were modelled by an isentropic efficiency, while a condenser, an evaporator and a regenerative heat exchanger were modeled by UA-LMTD method with a counter-flow assumption. The simulation results show that the power generation efficiency over 10% is expected when a heat source and sink inlet temperatures are $100^{\circ}C$ and $10^{\circ}C$ respectively.

  • PDF

터보펌프 부분흡입형 터빈 공력설계

  • Lee, Eun-Seok;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, one dimensional aerodynamic and structural study of a partial admission turbo pump turbine was performed. A turbine consists of a nozzle, rotor, outlet guide vanes. The aerodynamic characteristics of each component was derived from the governing equation and validated from the CFD calculations. One-dimensional basic design such as velocity triangles was conducted from the mean line analysis and modified from the 2-D and 3-D CFD analysis. The blade profile was determined by the CFD optimization. The thermal stress analysis and structural analysis are needed to be studied in the next design stage.

  • PDF

Flow and Electricity Power Characteristics of Hydraulic Turbine for Power Generation with Geothermal Energy System (지열에너지 시스템을 적용한 발전용 수차의 유동과 전력 특성)

  • Seo, Choong-Kil;Won, Joung-Wun
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2015
  • Geothermal energy is used in various types, such as power generation, direct use, and geothermal heat pumps. Geothermal energy with high temperature have been used for power generation for more than a century. The purpose of the study is to investigate flow and electricity power characteristics of hydraulic turbine for power generation of geothermal heat pump type with closed-system. The differences between the four types of hydraulic turbine, are different from the blade shape, volume, angle and etc. In case of prototype(1), pressure at blade was reduced to 2.1 bar, the kinetic energy of blade increased by increasing flow velocity(4.1 m/s). The increase of flow velocity at the blade edge markedly appeared, to increase the kinetic energy of the rotating shaft. In case that gateway in hydraulic turbine was installed, operating torque and RPM(1,080) of the rotating shaft increased respectively. Although rotational speed of prototype(2) compared to prototype(1) was reduced, the power generation capacity was greater about 3.4 times to 97 W. The most power of 255W was generated from prototype (4).