• Title/Summary/Keyword: pulverized

Search Result 417, Processing Time 0.025 seconds

Economic Feasibility of Circulating Fluidized Bed Combustion Boiler Power Plant for Low Grade Coal (저급탄용 순환유동층 보일러 발전설비의 경제성 평가)

  • Hong, Min-Pyo;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.1
    • /
    • pp.73-80
    • /
    • 2012
  • The structure and combustion characteristics, and the economic feasibility of the circulating fluidized bed combustion(CFBC) boiler using low grade coal were introduced. The economic feasibility is evaluated by comparing a 500 MW CFBC boiler power plant using low grade coal and a pulverized combustion boiler power plant with high grade coal. As the result of the evaluation, the pulverized coal combustion boiler power plant has an internal rate of return of 12.95%, 1,395.9 billion Korean won of net present value, and 6.26 years of payback period. On the other hand, CFBC boiler power plant has an internal rate of return of 13.54%, 1,704.3 billion Korean won of net present value, and 6.02 years payback period. Therefore, the CFBC boiler power plant has better feasibility in all aspects, as 0.59% higher of internal rate of return, 308.4 billion Korean won of higher net present value and 0.24 year of shorter payback period.

  • PDF

A Numerical Study for Optimum Configuration of Pulverized Coal Nozzle to Prevent Uneven Distribution of Particle (분사된 미분탄의 편중분포 방지를 위한 내부장치 최적화에 관한 수치 해석적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Park, Seok-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.270-279
    • /
    • 2000
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutants emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle configuration. Basically, nozzle which has mixed flow of gas and particle is required to have the balanced coal concentration at exit, but it is very difficult to obtain that by itself without help of other device. In this study, coal distribution and pressure drop in gas-solid flow are calculated by numerical method in nozzle with various shapes of venturi diffuser as a means to get even coal particle distribution. The tentative correlations of pressure drop and exit coal distribution are deduced as function of the height, length and reducing angle of venturi from the calculated results. When coal hurner nozzle is designed, these equations are very useful to optimize the shape of venturi which minimize uneven particle distribution and pressure drop within coal nozzle.

Parametric Sensitivity of the Flow Characteristics on Pulverized Coal Gasification (유동변수들이 석탄가스화에 미치는 민감도에 대한 수치적연구)

  • Cho, Han-Chang;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • In order to analyze the sensitivity on the pulverized coal flames of the several variables, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas lagrangian approach is used for the solid phase. Turbulence is modeled using the standard $k-{\varepsilon}$ model. The turbulent combustion incorporates eddy dissipation model. The radiation was solved using a Monte-Carlo method. One-step two-reaction model was employed for the devolatilization of Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity seriously affects the position of flame front. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not influence the reactor performance such as coal conversion, residence time and flame front position. The primary/secondary momentum ratio affects the position of flame front, but the coal burnout is only slightly influenced. The momentum ratio is a variable only associated with the flame stabilization such as flame front position. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly reactor temperature and coal burnout.

  • PDF

Numerical Study on Pulverized Coal Combustion Applying Two-Phase WSGGM (이상 회체가스 가중합산모델을 적용한 미분탄 연소의 수치적 연구)

  • Yu, Myoung-Jong;Kang, Shin-Jae;Baek, Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1368-1379
    • /
    • 2000
  • A numerical study on swirling pulverized coal combustion in an axisymmetric enclosure is carried out by applying the 2-phase weighted sum of gray gases model (WSGGM) approach with the discrete ordinate method (DOM) to model the radiative heat transfer equation. In the radiative transfer equation, the same polynomial equation and coefficients for weighting factors as those for gas are adopted for the coal/char particles as a function of partial pressure and particle temperature. The Eulerian balance equations for mass, momentum, energy, and species mass fractions are adopted with the standard and RNG k-${\varepsilon}$ turbulence model, whereas the Lagrangian approach is used for the particulate phase. The eddy-dissipation model is employed for the reaction rate for gaseous mixture, and the single-step and two-step first-order reaction model for the devolatilization process for coal. Special attention is given to establish the thermal boundary conditions on radiative transfer equation By comparing the numerical results with experimental ones, the radiation model used here is confirmed and found to provide an alternative for simulating the radiative transfer.

Study on Coal Combustion Characteristics with 1MWth Test Facility (1MWth 실험연소로를 이용한 석탄의 연소특성 연구)

  • Jang, Gil Hong;Chang, In Gab;Jeong, Seok Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF (TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구)

  • Lee, Dae-Keun;Seo, Dong-Myung;Noh, Dong-Soon;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF

An Experimental Study on Slagging/Fouling Characteristics for Various Coals in a 50kWth Pulverized Coal Combustion System (50kWth미분탄 연소 시스템에서 탄종별 슬래깅 및 파울링 특성 연구)

  • Kang, Kieseop;Lee, Jaewook;Chae, Taeyoung;Ryu, Changkook;Yang, Won
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.107-109
    • /
    • 2012
  • In Korean coal power plants, rising coal prices have recently led to the rapid utilization of low lank coals such as sub-bituminous coal with low calorific values and low ash fusion temperatures. Using these coals beyond the design range has resulted in important issues including slagging and fouling, which cause negative effects in boiler performances and unstable operations. The purpose of this study is to observe slagging and fouling characteristics resulted from burning various ranks of pulverized coals. We have tested 3 different coals: FLAME(bituminous), KCH(sub-bituminous) and MOOLARBEN(bituminous)coals in the pilot system $50kW_{th}$ scale. A stainless steel tube with preheated air inside was installed in the downstream in order to simulate water wall. Collected ash on the probe and the slag inside the furnace near burner were analyzed by SEM (scanning electron microscopy) to verify the formation degree, surface features and color changes of the pasty ash particles. Induced coupled plasma and energy dispersive X-ray spectroscopy were also performed to figure out the chemical characteristics of collected samples. As a result, KCH was observed that more slag was developed inside the walls of the furnace and on the probe than the other two kinds of coals, as shown in the calculate slagging and fouling indices as well.

  • PDF

Electrostatic Precipitation Characteristics of Coal Combustion Boiler (석탄연소 보일러용 분진의 전기집진특성)

  • Lee, Tae-Sik;Bun, Cha-Seok;Kim, Gyeong-Seok;Nam, Chang-U;Lee, Gyu-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.475-482
    • /
    • 1999
  • The electrostatic precipitation characteristics of two kinds of fly ashes, one derived from a fluidized bed combustor(FBC), the other from a pulverized coal(PC) fired furnace, have been studied on a pilot plant. Experiments have been carried out to enhance the collection efficiency while changing the operating conditions for two kinds of coal ashes, respectively. It has been shown that collection efficiency is affected by many factors such as shape of the ashes, dust contents, humidity, and temperature, etc. Experimantal results showed that collection efficiency of the FBC ashes was higher than that of the PC fly ash in spite of the small size of the FBC ashes. The experimetal results have been applied to the collection efficiency equations to show that the modified Deutsch equation was well agreed with experiment results if modification parameter k was set to 0.6 for the fluidized bed fly ashes and to 0.43 for the pulverized coal fly ashes.

  • PDF

Effect of Heating Rate on the Behavior of the Flame Front in the Pulverized-Coal Flame (미분탄화염에서 가열률이 화염선단의 거동에 미치는 영향)

  • Cho, Han Chang;Park, Jung Kyu;Shin, Hyun Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.687-694
    • /
    • 1999
  • An experimental study was carried out in two laboratory-scale reactors to investigate the effect of heating rate on the behavior of flame front in a pulverized coal flame. Each. reactors had different heating mechanisms. For reactor A losing large heat through transparent quartz wall. pulverized coal particles were ignited by secondary air of 1050K. Flame front could be visualized through the transparent wall. Reactor B was insulated with castable refractory to minimize the heat loss through the reactor wall and accompanied with secondary air of 573K. Flame front was estimated from the gas temperature and species concentration measured using R-type thermocouple(Pt-Pt/Rh 13%) and gas chromatograph at various coal-air ratios and swirl intensities. The flame front position was closely related with the magnitude of heating rate. The heating rate for lifted flame was of the order of $10^4$ to $10^5K/s$ and for coal Ignition at least over $10^4K/s$. The heating mechanism had little impact on the extinction limits. The weak swirl number of 0.68 forced the flame front to move toward the upstream by the rapid mixing of coal and air. The primary/secondary momentum ratio was an inappropriate variable to distinct the liftoff of flame.

Pulverized Coal Particle Presence Inside CWM Droplet (CWM 방울안의 미분탄 존재)

  • 김종호;김성준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1211-1221
    • /
    • 1990
  • The purpose of this study is to get experimental data on the distribution of CWM (Coal- Water Mixture) droplets size and the presence of pulverized coal particles inside CWM droplets. Atomization of CWM is done by Twin-Fluid Atomizer. The operational parameters are atomizing air pressure, coal particle loading, mean size of pulverized coal particles and sampling positions across spray. Th data analysis is initiated by Impression Sampling Method(Magnesium Oxide Technique) and Photo-technique and counting works are followed. Experimental work induces following research results. The variation of particle loadings in slurry makes no appreciable effects on the mean size of CWM droplets. It is evident that atomizing air pressure has very strong effect on the atomization of slurry. The mean size of atomized fuel droplets is dramatically reduced with the increasing air pressure. The population ratio of droplets without coal particles to total number of droplets is decreased as atomizing air pressure or loading rises and the same trend is obtained as the mean size of coal particles becomes smaller but a certain tendency of coal particle presence inside droplets could not be found from the change of sampling positions.