• Title/Summary/Keyword: pulverized

Search Result 417, Processing Time 0.026 seconds

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF

Analysis of Group Ignition of Pulverized Coal Particles (미분탄의 집단점화 해석)

  • Suh, K.K.;Kim, H.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 1999
  • Pulverized coal is widely used as the source of electrical power generation and industrial processes. Numerical analysis on the transient ignition process of the cloud of pulverized coal particles in various cases is carried out. Particle radius, initial particle temperature, number density are chosen as major parameters that influence the characteristics of ignition and combustion. The result can be summarized as follow. The ignition occurs at the position that is closed to the surface of the cloud. Maximum temperature and velocity appear at ignition point, and the concentrations of gaseous fuel and oxidizer decrease rapidly near the ignition point. The chemical reaction takes place in wider zone as number density and particle radius decrease. The ignition delay is shortest when particle radius is about $50\;{\mu}m$, and tends to be shorter as number density and initial ambient temperature increase.

  • PDF

Effect of Operating Conditions on Characteristics of Combustion in the Pulverized Coal Combustor (미분탄 연소로의 운전조건이 연소특성에 미치는 영향)

  • Kang, Ihl-Man;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.139-148
    • /
    • 1999
  • In oder to analyze the effect of operating conditions on pulverized coal combustion, a numerical study is conducted at the pulverized coal combustor. Eulerian approach is used for the gas phase, whereas Lagrangian approach is used for the particle phase. Turbulence is modeled using standard ${\kappa}-{\varepsilon}$ model. The description of species transport and combustion chemistry is based on the mixture fraction/probability density function(PDF) approach. Radiation is modeled using P-l model. The turbulent dispersion of particles is modeled using discrete random walk model. Swirl number of secondary air affects the flame front, particle residence time and carbon conversion. Primary/Secondary air mass ratio also affects the flame front but little affects the carbon conversion and particle residence time. Air-fuel ratio only affects the flame front due to lack of oxygen. Radiation strongly affects the flame front and gas temperature distribution because pulverized coal flame of high temperature is considered.

  • PDF

Characterization of pulverized normal and waxy rice starches (멥쌀과 찹쌀전분의 초미립분쇄 후 특성변화연구)

  • Han, Jung-Ah
    • Korean journal of food and cookery science
    • /
    • v.29 no.6
    • /
    • pp.833-839
    • /
    • 2013
  • Separated normal and waxy rice starches were pulverized, and the physicochemical and digestive properties of the starches were determined. The size of both starch granules significantly decreased (less than $8{\mu}m$) after pulverization. For pasting properties, significant decreases of peak and setback viscosity were observed in both of pulverized starches than in native ones. The lower pasting temperature as well as increased solubility and water binding capacity of pulverized starches imply molecular degradation of starch by pulverization. For thermal properties, onset temperature and melting enthalpy significantly decreased after pulverization, especially in normal rice starch, however there was no difference in amylose-lipid complex before andafter pulverization. The slowly digestible and resistant starch portion of normal rice starch increased after pulverization, however, in waxy rice starch, the rapidly digestible portion increased.

The effect of design parameters on the pulverized coal separator efficiency (미분탄 분리장치의 성능에 영향을 미치는 설계인자)

  • Lee, Gun-Myung;Ha, Jong-Kwang;Ahn, Sang-Taek;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.385-389
    • /
    • 2003
  • Three-dimensional experimental analysis was conducted in the pulverizer simplified isothermal model. The experiment model was constructed on a 1/3.5 scale of 500MW pulverizer. The purpose of this study is to investigate the effect of design parameters on the pulverized coal separator efficiency. Where used pulverized coal separator design parameters are guide vane angle, static classifier angle, dynamic classifier rpm. Taguchi method was used to find the effective design parameters related to pulverized coal separator efficiency. The results of the experiment showed that guide vane angle and dynamic classifier rpm were the design key parameters. In addition to the total number of experiment cases were reduced by Taguchi method.

  • PDF

Particle Laden Flows Around Orifice Plates for Pressure Control in Pulverized Coal Pipe Lines (분체 이송관내 압력 조절을 위한 오리피스 주위에서의 입자 유동 및 마모 해석)

  • Cho, Hyung-Hee;Lee, Jae-Keun;Park, Ho-Dong;Seo, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1499-1508
    • /
    • 1998
  • A numerical study is performed to investigate pressure drops, particle trajectories and erosion around orifice plates in pulverized coal pipe lines. Particle impaction rates change significantly with orifice shapes and Stokes numbers. At Reynolds number of $5{\times}10^5$, the pulverized coal flows well with streamlines and do not collide at the orifice plates at small sizes (${\sim}20{\mu}m$). However, the large particles (over $70{\mu}m$) impact on the front face of the orifice and erode the orifice surface. The pressure loss coefficients around the erode orifice are largely different from the designed original orifice.

Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample (연소중 미분탄의 발광 분석 및 입자 채집 관찰)

  • Kim, Dae-Hee;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2010
  • Combustion behavior of pulverized coal particles in a post-combustion gas reactor was investigated. Radiation emission from coal particles were analyzed by direct photograph and $CH^*$ radical chemiluminescence intensity. Coal particles were sampled during the combustion and were observed by scanning electron microscopy (SEM) and cross section micrograpy technique. Two coal types(one bituminous and one subbituminous coals typically used in the Korean power plants) were tested at typical combustion environment. Gas flow conditions were controlled to represent temperature and oxygen concentration. Experimental data were discussed along with conceptual descriptions of pulverized coal combustion, where particle heat-up, release and combustion of volatiles, and char combustion were sequentially progressed.

Ignition behaviour of pulverized coal particle during coal combustion (미분탄 연소의 점화 특성에 관한 연구)

  • Li, Dongfang;Kim, Ryang Gyoon;Song, Ju Hun;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.213-215
    • /
    • 2012
  • As one of the primary fuel sources, oxy-fuel combustion of coal is actively being investigated because of the climate changing problem such like the emission of green house gases. In this paper research about the pulverized coal technology, which is widely used in both power-generating and iron-making processes was studied to invesgate the ignition behaviour of pulverized coal particles during coal combustion as changing the ambient oxygen concentration of the particle. The ignition phenomenon of the coal particles fed into a laminar flow reactor was imaged with a Integrated charged-coupled device (ICCD) camera. The ignition points were determined throught the analysis of the images, and then the ignition delay times were able to be calculated. The experiment results show that a lower oxygen concentration increases the ignition delay time.

  • PDF

Setting Properties of High Aluminate Composite According to Various Temperature and Components

  • Li, Mao;Kim, Jin-Man;Choi, Sun-Mi;Lee, Dong-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.36-37
    • /
    • 2016
  • Among all the slags, ladle furnace slag (LFS) is reducing slag generated from electric arc furnace. After cooled rapidly by high-pressured air (atomizing technology), LFS has more amorphous phase than slow cooled slag. Therefore, it shows higher reactivity than another recycling slag. This material also is named by rapid cooling LFS (RC-LFS). Pulverized RC-LFS should be fully understood. This paper deal with the present some basic experimental properties and discussions about the setting time of pulverized RC-LFS with different gypsum under the various temperatures. According to the experimental results, the pulverized RC-LFS with gypsum can hydrate in a low-temperature environment, even though the initial and final setting time are delayed.

  • PDF

A Study on the Particle Behavior in Turbulent Pulverized Coal Flame (난류 미분탄화염 내 입자거동에 관한 연구)

  • Hwang, Seung-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.12
    • /
    • pp.1111-1118
    • /
    • 2010
  • Combustion measurements based on optical techniques have recently become of major interest as tools not only for clarifying the combustion mechanism but also for validating the computational results for the combustion fields. In this study, the particle behavior in turbulent pulverized coal flame are investigated using advanced optical diagnostics. A laboratory-scale pulverized coal combustion burner is specially fabricated as open type in order to apply various optical measurement techniques. The detailed particle behavior is performed by LDV (laser Doppler velocimetry) and SDPA (shadow Doppler particle analyzer). It is observed that the particle mean diameter increase as the distance from burner increases, and this is found to be caused by the decrease of small particles' diameter and increase of large particles' diameter. This is because of result in the char reaction and the particle swelling due to devolatilization, respectively. The size-classified streamwise velocities of pulverized coal particles in the central region of the jet show the same magnitude, whereas those in the outer region are different depending on the particle size. The results show that the velocity and size-classified diameter of the pulverized coal particles in the flame can be measured well by SDPA.