• Title/Summary/Keyword: pulsed-flows

Search Result 20, Processing Time 0.034 seconds

A study on velocity measurements of natural convection flows using multiple pulsed particle image analysis (다중노출 입자영상해석을 통한 자연대류 유속측정에 관한 연구)

  • Han, H.T.;Kim, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.3
    • /
    • pp.268-275
    • /
    • 1997
  • Using the film-based particle image velocimetry, natural convective flows have been measured quantitatively in a rectangular enclosure with a heater located on the bottom surface. The success rate of the present interrogation method has been obtained as a function of the number of particle pairs and the distance between the particle pairs. The influence of the diffraction halo at the center have been effectively eliminated by rotating-subtracting the original Fourier-transformed image. By utilizing the coded multiple pulsed illumination with two different time intervals, the minimum measurable velocity have been improved. The results of the velocity distributions and the heat transfer correlations have been obtained for different locations of heater in the enclosure.

  • PDF

Influence of a simple fracture intersection on density-driven multiphase flow

  • Seong-Hun, Ji;M.J., Nicholl;R.J., Glass;Gang-Geur, Lee
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.89-92
    • /
    • 2004
  • The influence of a single fracture intersection on density-driven immiscible flow is compared between wetting (water into air) and nonwetting (Trichloroethylene into water) flows. At low supply rates, the intersection acted as a hysteretic gate to pulsed flow of the wetting phase, but had minimal influence on nonwetting phase flow. For both cases, increasing the supply rate led to the formation of continuous fluid tendrils that crossed the intersection without interruption. The wetting experiment returned to pulsed flow as the supply rate was decreased, while the nonwetting experiment maintained a continuous flow structure. Results suggest a fundamental difference between wetting and nonwetting phase flows in fracture network.

  • PDF

Limnological Study on Spring-Bloom of a Green Algae, Eudorina elegans and Weirwater PulsedFlows in the Midstream (Seungchon Weir Pool) of the Yeongsan River, Korea (영산강 중류 (승촌보)의 봄철 녹조류 Eudorina elegans 대발생과 봇물 펄스방류에 대한 육수학적 고찰)

  • Shin, Jae-Ki;Kang, Bok-Gyoo;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.4
    • /
    • pp.320-333
    • /
    • 2016
  • This study was carried out to elucidate the development of unprecedented water-bloom caused by a single species of colonial green algae Eudorina elegans in the upstream area of the Seungchon weir located in the Yeongsan River from late April to May 2013. The Yeongsan River is typically regulated system and the waterbody is seriously enriched by both external and internal sources of nutrients. Seasonal algal outbreaks were highly probable due to various potential factors, such as the excessive nutrients contained in treated wastewater, slow current, high irradiation and temperature, in diatom (winter), green algae (spring) and bluegreen algae (summer). Spring green-tide was attributed to E. elegans with level up to $1,000mg\;m^{-3}$(>$50{\times}10^4cells\;mL^{-1}$). The bloom was exploded in the initial period of the algal development and after then gradually diminished with transporting to the downstream by the intermittent rainfall, resulting in rapid expansion of the distribution range. Although the pulsed-flows by the weir manipulation was applied to control algal bloom, they were not the countermeasures to solve the underlying problem, but rather there still was a remaining problem related to the impact of pulsed-flows on the downstream. The green-tide of E. elegans in this particular region of the Yeongsan River revealed the blooming characteristics of a colonial motile microalga, and fate of vanishing away by the succeeding episodic events of mesoscale rainfall. We believe that the results of the present study contribute to limno-ecological understanding of the green-tide caused by blue-green algae in the four major rivers, Korea.

Discharge characteristics of FFL as applied voltage variation (인가 전압의 변화에 따른 FFL(Flat Fluorescent Lamp)의 방전특성)

  • 윤성현;박철현;조민정;임민수;권순석;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.379-382
    • /
    • 2000
  • The characteristics of Xe discharge lamp(Mercuryless lamp) are described in this paper. In this paper, FFL is operated by sine wave and pulsed source. We apply V-Q Lissajous' figure for the discharge measurements of FFL which has the electrodes covered with dielectric. When FFL is operated by sine wave source, the characteristics are similar to DBD(Dielectric Barrier Discharge) and SD(Silent Discharge). And we compared the characteristics of FFL which is operated with sine wave and pulsed discharge by using V-Q Lissajous' figure method. When FFL is operated with pulsed, the discharge current flows after the applied voltage is risen. As the duty ratio increases the electric field becomes strong and much more xenon ions are produced. And the number of metastable xenon atoms seem to increase, therefore, the phosphor radiation after the cut off of voltage increases compared with the first peak of radiation. Consequently, the 172㎚ radiation becomes strong as the duty ratio increases.

  • PDF

Convection Effects on PGSE-NMR Self-Diffusion Measurements at Low Temperature: Investigation into Sources of Induced Convective Flows

  • Chung, Kee-Choo;Yu, Hyo-Yeon;Ahn, Sang-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1970-1974
    • /
    • 2011
  • The effects of convection on the measurement of the diffusion coefficients of liquids by the pulsed gradient spin echo (PGSE) NMR method at low temperature are discussed. To examine the generation of convective flows, we used four different types of sample tubes in the diffusion measurements with temperature variation; a normal 5 mm NMR tube, a Shigemi tube, an ELISE type tube, and a capillary tube. Below room temperature, the calculated diffusion coefficients of chloroform in 5 mm o.d. type tubes increased with decreasing temperature, while those in the capillary tube decreased linearly. The convective flow was found to be significant even at low temperature and it seemed to be mainly induced by the transverse temperature gradient. It was also found that the capillary tube was most appropriate to measure the diffusion coefficients, since its small diameter is effective in suppressing the convective flows at both high and low temperatures.

An Experimental Study on Angled Injection and Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow

  • Kim, Min-Ki;Song, Jin-Kwan;Hwang, Jeong-Jae;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.486-491
    • /
    • 2008
  • The spray characteristics and drop size measurements have been experimentally studied in liquid jets injected into subsonic crossflow. With water as fuel injection velocity, injection angle and atomizer internal flows were varied to provide of jet operation conditions. The injector internal flow was classified as three modes such as a non-cavitation flow, cavitation, and hydraulic flip flows. Pulsed Shadowgraph Photography measurement was used to determine the spatial distribution of the spray droplet diameter in a subsonic crossflow of air. And this study also obtains the SMD(Sauter Mean Diameters) distribution by using PLLIF(Planar Liquid Laser Induced Fluorescence) technique. The objectives of this research are getting a droplet distribution and drop size measurement of each condition and compare with the other flows effect. As the result, This research have been showed the droplet size were spatially dependent on air-stream velocity, fuel injection velocity, injection angle effects and normalized distance from the injector exit length.(x/d, y/d)There are also different droplet size characteristics between cavitation, hydraulic flip and the non-cavitation flows.

  • PDF

COMPUTATIONAL MODELING AND SIMULATION OF METAL PLASMA GENERATION BETWEEN CYLINDRICAL ELECTRODES USING PULSED POWER (펄스파워를 이용한 실린더형 전극간 금속 플라즈마 생성현상의 전산유동해석)

  • Kim, K.;Kwak, H.S.;Park, J.Y.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.68-74
    • /
    • 2014
  • This computational study features the transient compressible and inviscid flow analysis on a metallic plasma discharge from the opposing composite electrodes which is subjected to pulsed electric power. The computations have been performed using the flux corrected transport algorithm on the axisymmetric two-dimensional domain of electrode gap and outer space along with the calculation of plasma compositions and thermophysical properties such as plasma electrical conductivity. The mass ablation from aluminum electrode surfaces are modeled with radiative flux from plasma column experiencing intense Joule heating. The computational results shows the highly ionized and highly under-expanded supersonic plasma discharge with strong shock structure of Mach disk and blast wave propagation, which is very similar to muzzle blast or axial plasma jet flows. Also, the geometrical effects of composite electrodes are investigated to compare the amount of mass ablation and penetration depth of plasma discharge.

Application of turbulent model to characteristics of heat transfer in impinging jet flow with pulsed inlet (입구유동 가진이 있는 충돌제트 유동의 유동 및 열전달 변화에 대한 난류모델 적용)

  • Kwon, Dong-Ho;Kim, Hee-Yougn;Park, Tae-Seon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.593-596
    • /
    • 2008
  • Because of good performance of heat transfer characteristics, impinging jets are widely used in many industries for cooling or heating. And the present num erical studies attempt to show the effects of impinging jet. This paper considers the application of the turbulent models to impinging jet flow with pulsed inlet. It is assumed two-dimensional turbulent flows. The jet Reynolds num ber is set at 23,000 and the distance from the exit of the nozzle to the plate is 3 times larger than the diam eter of the nozzle. The influence of the Strouhal num ber(pulsation frequency) on Nusselt number at the impinging region is investigated. Strouhal numbers are ranged 0.0 to 0.5 and the forcing amplitudes are 1%,5%,9% of mean inlet velocity. In this study, the Nusselt number at the impinging region is sensitive to the pulsation frequency. Heat transfer coefficient strongly increase at Strouhal num ber of 0.4.

  • PDF

Flows around crossflow fan (Crossflow Fan 주변의 유동)

  • Kim, Jae-Won;Jung, Yeun-Young
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.678-683
    • /
    • 2001
  • The present work has carried out experimental study on a cross-flow fan system with a simplified vortex wall scroll casing. A cross-flow fan test rig was constructed to obtain pressure rise and volume flow rate for various fan operating conditions. The performance estimation is using a wind tunnel with a motor driven damper for flow rate control and flows are quantitatively visualized by light scattering system with a pulsed laser. Min focus on the visualization is finding a eccentric vortex inside a fan which is a major factor reducing fan efficiency. Comprehensive engineering data are prepared for industrial applications and show a good agreement with a prior work by experimental measurements.

  • PDF