• Title/Summary/Keyword: pulsed laser

Search Result 1,237, Processing Time 0.024 seconds

Modeling of Pulsed Laser Heating of Tissue: Implications or Skin Resurfacing (Pulsed Laser를 이용한 생체조직 가열을 위한 모델링 : Skin Resurfacing을 위한 연관성)

  • Kwon, Y.H.;Rastegar, S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.375-379
    • /
    • 1997
  • Pulsed Er:YAG and $CO_2$ lasers induced temperature rise of tissue are studied using axisymmetric, two-dimensional, and transient Pennes' bio-heat equation or the implications of skin resurfacing. Model results indicate that Er:YAG laser induced temperature has much higher but more shallow distribution in tissue than that of the $CO_2$ laser because of its higher absorption coefficient. The increase of repetition rate does not affect the temperature rise too much because these laser modalities have much shorter heat diffusion time than the temporal length of each off-pulse. This model works as a tool to understand the photothermal effect in the laser-tissue interaction.

  • PDF

Characteristics of ZnO Thin Films Grown on p-type Si and Sapphire Substrate by Pulsed Laser Deposition

  • Lee, K. C.;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.241-245
    • /
    • 2003
  • ZnO thin films on (l00) p-type Si and sapphire substrates have been deposited by a pulsed laser deposition technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters such as oxygen pressure, substrate temperature and laser energy density on the properties of the grown films was studied. The experiments were performed for substrate temperatures in the range of 200∼50$0^{\circ}C$ and oxygen pressure in the range of 100∼700 sccm. All of the films grown in this experiment show strong c-axis orientation with (002) textured ZnO peak. With increasing substrate temperature, the FWHM (full width at half maximum) and surface roughness were decreased. In the case of using sapphire substrate, the intensity of PL spectra increased with increasing ambient oxygen flow rate. We investigated the structural and morphological properties of ZnO thin films using X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM).

Fabrication of Organic Thin Films by Pulsed Laser Deposition (펄스 레이저 증착법을 이용한 유기 박막의 제작)

  • Park, Sang-Moo;Lee, Boong-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.455-460
    • /
    • 2008
  • In recent years, there has been highly interestedin pulsed laser deposition (PLD) method for fabrication of the organic thin films, as an alternative to conventional fabrication method such as vacuum evaporation and spin coating techniques. In this study, organic thin films of $Alq_3$ (aluminato-tris-8-hydroxyquinolate) and TPD for organic light emitting diodes (OLED) were deposited by PLD using KrF excimer ($\lambda$=278 nm) laser in nitrogen atmosphere. Deposited films were evaluated by photoluminescence(PL), Fourier-transform Infrared Spectroscopy (FT-IR) to study the effect of the laser and $N_2$ atmosphere parameters on the structural and optical properties.

A Study on the Pulsed $CO_2$ Laser by the Switching Control of Leakage Transformer Primary (누설변압기 1차측의 스위칭 제어에 의한 펄스형 $CO_2$레이저에 관한 연구)

  • Chung, Hyeon-Ju;Lee, Dong-Hoon;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.9
    • /
    • pp.541-545
    • /
    • 2000
  • We propose a pulsed $CO_2$laser below 30W by the AC(60Hz) switching control of leakage transformer primary which has some advantages of cost and size compared to a typical pulsed power supply. Pulse repetition rate is adjusted from 5 Hz to 60 to Hz control laser output. In this laser a low voltage open loop control for high voltage pulse discharge circuit is employed to aviod the Hv sampling or switching and high voltage leakage transformer is used to convert low voltage pulse rectified from AC to high voltage one. A ZCS(Zero Crossing Switch) circuit and a PIC(programble one-chip microprocessor are used to control gate signal of SCR precisely. The pulse repetition rate is limited by 60Hz due to the frequency of AC line and a high leadkage inductance. The maximum laser output was about 23 W at pulse repetition rate of 60Hz total gas mixture of $CO_2$ : $N_2$ : He=1: 9: 15 and total pressure of 18 Torr

  • PDF

Nano Fabrication of Functional Materials by Pulsed Laser Ablation

  • Yun, Jong-Won
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.6.2-6.2
    • /
    • 2009
  • Nanostructured materials arecurrently receiving much attention because of their unique structural andphysical properties. Research has been stimulated by the envisagedapplications for this new class of materials in electronics, optics, catalysisand magnetic storage since the properties derived from nanometer-scalematerials are not present in either isolated molecules or micrometer-scalesolids. This study presents the experimental results derived fromthe various functional materials processed in nano-scale using pulsed laserablation, since those materials exhibit new physical phenomena caused by thereduction dimensionality. This presentation consists of three mainparts to consider in pulsed laser ablation (PLA) technique; first nanocrystallinefilms, second, nanocolloidal particles in liquid, and third, nanocoating fororganic/inorganic hybridization. Firstly, nanocrystalline films weresynthesized by pulsed laser deposition at various Ar gas pressures withoutsubstrate heating and/or post annealing treatments. From the controlof processng parameters, nanocystalline films of complex oxides and non-oxidematerials have been successfully fabricated. The excellentcapability of pulsed laser ablation for reactive deposition and its ability totransfer the original stoichiometry of the bulk target to the deposited filmsmakes it suitable for the fabrication of various functionalmaterials. Then, pulsed laser ablation in liquid has attracted muchattention as a new technique to prepare nanocolloidal particles. Inthis work, we represent a novel synthetic approach to directly producehighly-dispersed fluorescent colloidal nanoparticles using the PLA from ceramicbulk target in liquid phase without any surfactant. Furthermore, novel methodbased on simultaneous motion tracking of several individual nanoparticles isproposed for the convenient determination of nanoparticle sizedistributions. Finally, we report that the GaAs nanocrystals issynthesized successfully on the surface of PMMA (polymethylmethacrylate)microspheres by modified PLD technique using a particle fluidizationunit. The characteristics of the laser deposited GaAs nanocrytalswere then investigated. It should be noted that this is the first successfultrial to apply the PLD process nanocrystals on spherical polymermatrices. The present process is found to be a promising method fororganic/inorganic hybridization.

  • PDF

Process Optimization for the Laser Cutting of Cold Rolled STS Sheet (냉연 스테인리스강판의 레이저 절단 특성)

  • 이기호;김기철
    • Journal of Welding and Joining
    • /
    • v.14 no.5
    • /
    • pp.59-68
    • /
    • 1996
  • This study was aimed to characterize the laser cutting process for the cold rolled stainless steel sheet. The principal process parameters of the cutting process were applied to both the continuous wave form and the pulsed wave form for the laser output mode. The laser-oxygen cutting process and the laser-nitrogen cutting process were also considered to characterize the quality and efficiency of the cutting process. The laser-oxygen cutting process revealed the better productivity than the laser-nitrogen cutting process, since the laser energy and the exothermic oxidation energy exerted on the laser-oxygen cutting process simultaneously during the entire cutting process. However, the straightness of the cutting section, which was considered as the most important factors, was inferior to that of the laser-nitrogen cutting process due to the formation of chromum oxide on the cutting surface. Frequency and duration of the pulsed wave form act as the main factors for the better quality, When the frequency increased from 100 Hz to 200 Hz and the duty increased from 20% to 40%, the quality factors such as the height of dross and the surface roughness were improved remarkably. The increase in the frequency from 200 Hz to 300 Hz, on the other hand, revealed the less effective in the cutting quality.

  • PDF

Structure and optical Properties of $Gd_{2}O_{3}$ thin films on glass Prepared by Pulsed Laser Deposition (레이저 층착법에 의해 형성된 $Gd_{2}O_{3}$박막의 구조와 광학적 특성)

  • Lee, Kyoung-Cheol;Lee, Cheon;Cho, S.;Park, J.C.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.362-364
    • /
    • 2001
  • The pulsed laser deposition(PLD) technology was used for the deposition of phosphor substance, Gd$_2$O$_3$on commercial glass. An Nd:YAG laser was employed for the deposition (wavelength 266nm, energy up to 100mJ/pu1se, pulse duration is 5ns and repetition rate 10 Hz). With respect to films grown by conventional PLD, this study exhibited the condition at normal temperature. Experiments were done without any reactive gas at a pressure of 10$^{-5}$ ~10$^{-6}$ Torr using second harmonic(λ=532 nm) and fourth harmonic(λ=266 nm) Nd:YAG laser. Analyses of the deposited material grown are performed by EDX, AFM, SEM, PL meseurements.

  • PDF

Photoluminescence characteristics of ZnO thin films by Pulsed laser deposition (PLD를 이용한 ZnO 박막의 발광에 관한 연구)

  • Kim, Jae-Hong;Lee, Kyoung-Cheol;Lee, Cheon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.1030-1033
    • /
    • 2002
  • ZnO thin films on (100)p-type silicon substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YGA laser with a wavelength of 266nm. The influence of the deposition parameters, such as oxygen pressure, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $200{\sim}500^{\circ}C$ and oxygen pressure in the range of $10^{-2}{\sim}10^2mTorr$. We investigated the structural, morphological and optical properties of ZnO thin films using X-ray diffraction(XRD), atomic force microscopy(AFM), photoluminescence(PL).

  • PDF

A Study on the Pulsed Laser Deposition of Diamond like Carbon Thin Films (다이아몬드상 카본박막의 펄스레이저 증착법 연구)

  • Sim, Gyeong-Seok;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.6
    • /
    • pp.403-409
    • /
    • 1999
  • We fabricated diamond like carbon (DLC) thin films using pulsed laser deposition (PLD) method. Among many deposition parameters, the effects of the deposition temperature and the laser energy density were investigated. Structural properties of the films were studied by Raman spectroscopy. The surface morphologies and cross-section imagies of the films were investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM) respctively. DLC thin films fabricated at $12 J/cm^2$ of a laser energy density and $300^{\circ}C$ of a deposition temperature showed the best quality.

  • PDF

Effect of Deposition Rate on the Property of ZnO Thin Films Deposited by Pulsed Laser Deposition

  • Kim Jae-Won;Kang Hong-Seong;Lee Sang-Yeol
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.98-100
    • /
    • 2006
  • ZnO thin films were deposited at different repetition rates of 5 Hz and 10 Hz by pulsed laser deposition. X-ray diffraction (XRD) full widths at half maximum (FWHMs) of (002) ZnO peak in ZnO thin film deposited at 5 Hz and 10 Hz was 0.22 and $0.26^{\circ}$, respectively. The grain size of ZnO thin film deposited at 5 Hz was larger than that of 10 Hz. The variation of repetition rates did not have an effect on the optical property of ZnO thin films. The degradation of the crystalline quality and surface morphology in ZnO thin film deposited at 10 Hz resulted from supersaturation effect by decrease of time interval between a ZnO particle arriving on a substrate by laser shot and a ZnO particle arriving on a substrate by next laser shot.