• Title/Summary/Keyword: pulsed electric field (PET)

Search Result 1, Processing Time 0.013 seconds

Physiological Properties of Microbial Cells Treated by Pulsed Electric Field(PEF) (고전압 펄스 전기장 처리된 미생물 세포의 생리특성)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Choi, Hee-Don;Hong, Hee-Doo;Ha, Sang-Do;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.368-374
    • /
    • 1999
  • This study was designed to investigate effects of pulsed electric field (PEF) treatment on physiological changes of microbial cells, using domestically fabricated pilot scale PEF device. The effect of non-thermal PEF treatment on physiological characteristics of microorganisms was determined by salt resistance, the amount of UV absorbents, cell staining, recovery rate of defected cells, and changes in structure of cell membrane. Salt resistance of Escherichia coli, Bacillus subtilis and Rhodotorula minuta was examined after PEF treatment at 40 kV/cm, 84 pulse, $10{\mu}s$ pulse duration. Approximately $1\;log_{10}$ cell number of viable microorganisms was decreased by addition of salt. PEF treatment significantly increased the amount of UV absorbents at 260 and 280 nm because of leakage from damaged cell membrane by PEF treatment. Although three kinds of microorganisms treated by PEF were difficult to be observed due to their cell membrane damage, untreated cells were clearly observed by a microscope. PEF-treated R. minuta was not stained by methylene blue due to cell membrane defect. When E. coli, B. subtilis and R. minuta were cultured after PEF treatment, they showed 5, 4, and 8 hr longer lag phase, respectively, compared to control, but growth rates were not affected.

  • PDF