• Title/Summary/Keyword: pulsed electric field

Search Result 105, Processing Time 0.022 seconds

Effect of High Voltage Pulsed Electric Fields on Extraction of Purple Sweet Potato Pigment (자색 고구마 색소의 추출에 미치는 고전압 펄스 전기장의 영향)

  • Shin, Jung-Kue;Shin, Hae-Hun
    • Food Science and Preservation
    • /
    • v.14 no.2
    • /
    • pp.165-169
    • /
    • 2007
  • High voltage pulsed electric fields (PEF) is a promising technology for the nonthermal extraction of effective components from biological materials. Plant cells were ruptured with PEF at ambient or refrigerated temperature for a short treatment time of second or microsecond. Treatments of coarsely ground purple sweet potato (PSP) with PEF(30 kV/cm, 500 Hz) resulted in maximum extraction yield of 65% as compared with 45-50% for control. An increase in electric field strength (from 10kV/cm to 35kV/cm) and frequency (from 100Hz to 500Hz) resulted in increased amount of extracted pigments, but treatment time is not affected on pigment extraction. Starch granules were not detected and large intracellular spaces were visible between the cells on light and scanning election microscopy of PEF treated PSP. This result suggests that PEF have potential to use on extraction of pigments from plant cells.

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF

Pulsed Electric Fields: An Emerging Food Processing Technology-An Overview (PEF 처리에 의한 식품의 가공)

  • Jayaprakasha, H.M.;Yoon, Y.C.;Lee, S.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.871-878
    • /
    • 2004
  • Pulsed electric fields(PEF) technology is one of the latest nonthermal methods of food processing for obtaining safe and minimally processed foods. This technology can be effectively explored for obtaining safe food with minimum effect on nutritional, flavor, rheological and sensory qualities of food products. The process involves the application of high voltage(typically 20 ${\sim}$ 80 kv/cm) to foods placed between two electrodes. The mode of inactivation of microorganism; by PEP processing has been postulated in term; of electric breakdown and electroporation. The extent of destruction of microorganisms in PEF processing depends mainly on the electric field strength of the pulses and treatment time. For each cell types, a specific critical electric field strength and specific critical treatment time are required depending on the cell characteristics and the type and strength of the medium where they have been present. The effect also depends on the types of microorganisms and their phase of growth. A careful combination of processing parameters has to be selected for effective processing. The potential applications of PEF technology are numerous ranging from biotechnology to food preservation. With respect to food processing, it has already been established that, the technology is non-thermal in nature, economical and energy efficient, besides providing minimally processed foods. This article gives a brief overview of this technology for food processing applications.

DeNOx modeling in $N_{2}/O_{2}$ gas by pulsed corona discharge ($N_{2}/O_{2}$ 혼합가스에서 펄스코로나 방전을 이용한 NOx 제거 모델링에 관한 연구)

  • Park, Kwang-Seo;Lee, Hyoung-Sang;Chun, Bae-Hyeock;Shin, Hyun-Ho;Yoon, Woong-Sup;Chun, Kwang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.117-128
    • /
    • 1999
  • The removal of nitrogen oxides(NOx) from $N_{2}/O_{2}$ gas using a pulsed corona discharge was investigated as a function of the reduced electric field(E/N) and the energy density(J/L). A kinetic model was developed to characterize the chemical reactions taking place in a pulsed corona discharge reactor. The model calculates the fractional concentrations of radical species at each pulse-on period and utilizes the radicals to remove NOx for the subsequent pulse-off period. Electron collision reaction data are calculated using ELENDIF program to solve Boltzmann equation for electron energy distribution function, and the subsequent chemical reactions are calculated using CHEMKIN-II program to solve stiff ODE(ordinary differential equation) problems for species concentrations. The corona discharge energy per pulse and the time-space averaged E/N were obtained by fitting the model to experimental data. The model calculation shows good agreement with the experimental data, and predicts the formation of other species such as $NO_{2}$, $O_{3}$ and $N_{2}O$.

  • PDF

Observation of Plasma Shape by Continuous dc and Pulsed dc (직류 방전과 펄스 직류 방전에 의한 플라즈마 형상 관찰)

  • Yang, Won-Kyun;Joo, Jung-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Effects of bipolar pulse driving frequency between 50 kHz and 250 kHz on the discharge shapes were analyzed by measuring plasma characteristics by OES (Optical Emission Spectroscopy) and Langmuir probe. Plasma characteristics were modeled by a simple electric field analysis and fluid plasma modeling. Discharge shapes by a continuous dc and bipolar pulsed dc were different as a dome-type and a vertical column-type at the cathode. From OES, the intensity of 811.5 nm wavelength, the one of the main peaks of Ar, decreased to about 43% from a continuous dc to 100 kHz. For increasing from 100 kHz to 250 kHz, the intensity of 811.5 nm wavelength also decreased by 46%. The electron density decreased by 74% and the electron temperature increased by 36% at the specific position due to the smaller and denser discharge shape for increasing pulse frequency. Through the numerical analysis, the negative glow shape of a continuous dc were similar to the electric potential distribution by FEM (Finite Element Method). For the bipolar pulsed dc, we found that the electron temperature increased to maximum 10 eV due to the voltage spikes by the fast electron acceleration generated in pre-sheath. This may induce the electrons and ions from plasma to increase the energetic substrate bombardment for the dense thin film growth.

Influence of Pulsed Electric Field on Accumulation of Calcium in Lactobacillus rhamnosus B 442

  • Goral, Malgorzata;Pankiewicz, Urszula;Sujka, Monika;Kowalski, Radoslaw;Giral, Dariusz;Kozlowicz, Katarzyna
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • Calcium is an element that performs many important functions in the human body. A study was conducted on the use of a pulsed electric field (PEF) to enrich cells of Lactobacillus rhamnosus B 442 in calcium ions. The highest concentration of calcium ions in bacterial cells (7.30 mg/g d.m.) was obtained at ion concentration of 200 ㎍/ml of medium and with the use of the following PEF parameters: field strength 3.0 kV/cm, exposure time 10 min, pulse width 75 ms and 20 h of culturing after which bacteria were treated with the field. Cell biomass varied in the range from 0.09 g/g d.m. to 0.252 g/g d.m., and the total number of bacteria ranged from 1010 CFU/ml to 1012 CFU/ml. Microscope photographs prove that calcium ions were situated within the cells of the bacteria, and electroporation contributed to an increase in the effectiveness of the ion bioaccumulation process. Samples containing calcium and subjected to electroporation displayed intensive fluorescence. The significance of this research was the possibility of using probiotic bacteria enriched with calcium ions for the production of functional food in subsequent studies.

Commercial pasteurization of foods using high voltage pulsed electric fields treatment (고전압 펄스 전기장을 이용한 식품의 상업적 살균)

  • Shin, Jung-Kue
    • Food Science and Industry
    • /
    • v.53 no.3
    • /
    • pp.284-294
    • /
    • 2020
  • High voltage pulsed electric field technology has been attracting attention in the the food industry as an eco-friendly nonthermal process technology using electrical energy. The lack of understanding of the equipment and the burden of equipment cost have not significantly increased the commercial application, but the potential as a technology to replace the heat process has been continuously increased. Sterilization of foods using the PEF process has been applied to liquid foods with low viscosity such as fruit and vegetable juices, but recently, high viscosity smoothies, high concentrate protein drink, mixed juice, and alcoholic beverages. Studies on sterilization of solid foods such as powders, raw meats are also being conducted. Also, the application of extraction and recovery of useful ingredients, activation of active compounds, pretreatment of drying, improvement of meat quality, changes of properties of starch has been studies.

Non-thermal Pasteurization of Carrot Juice by High Voltage Pulsed Electric Fields with Exponential Decay Pulse (고전압 Exponential Decay Pulse를 이용한 당근주스의 비열(非熱) 살균)

  • Ha, Koo-Yong;Shin, Jung-Kue;Lee, Seok-Hoon;Cho, Hyung-Yong;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.1577-1582
    • /
    • 1999
  • Carrot juice inoculated with $2\;{\times}\;10^8\;cfu/mL$ of Escherichia coli was treated with pulsed electric fields(PEF) for the purpose of a development of new cold pasteurization processes. Inactivation of E. coli in carrot juice increased with increase in intensity of the electric field strength and treatment time. The cells were suspended at concentration of ca. $2\;{\times}\;10^8$ cells per ml. A reduction of 4D was obtained at 40 kv/cm and 256 exponential decay pulses at room temperature. Critical electric field strength(Ec) and treatment time(tc) needed for inactivation of E. coli were 11.74 kV/cm and $3.6\;{\mu}s$ at room temperature, respectively. The combination of PEF and thermal treatment inactivated E. coli more effectively. The reductions of up to 5.5D were observed when the carrot juice was treated with PEF of 22.5 kV/cm and $205\;{\mu}s$ at $50^{\circ}C$. PFF treatment did not effect in color, pH, $^{\circ}Brix$, titratable acidity and ${\alpha}-,\;{\beta}-carotene$ contents of carrot juice.

  • PDF

Interfacial Charge Behaviors in SXLPE/XLPE Laminates (SXLPE/XLPE laminate의 계면전하 거동)

  • 고정우;남진호;서광석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.127-132
    • /
    • 2002
  • Space charge distributions and behaviors in silane crosslinked polyethylene(SXLPE)/ crosslinked polyethylene(XLPE) laminates were investigated using a pulsed electroacoustic (PEA) method. In case of monolayer, XLPE shows heterocharge while SXLPE shows homocharge. It was observed that charges were accumulated at the interface of SXLPE/XLPE laminate when applied electric field was more than 20kV/mm. The charge profile at various temperatures was also acquired using temperature-controllable PEA system. Although applied electric field is only 8.6 kV.mm, positive interfacial charge starts to appear near 50$^{\circ}C$. It was found that the interfacial charge behavior of SXLPE/XLPE laminate under low voltage at high temperature is corresponding to that under high voltage at room temperature.

A STUDY ON THE ORTHODONTIC TOOTH MOVEMENT UNDER HALF SINE-WAVE PULSED ELECTROMAGNETIC FIELDS (Half sine-wave pulsed electromagnetic fields 내에서 교정력에 의한 치아 이동에 대한 연구)

  • Kim, Young-Joon;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.897-916
    • /
    • 1994
  • The biologic potential, which is different from the piezoelectric signals, relates tooth movement at least in part to changes in bone metaboliosm in bioelectric theory. The purpose of this experiment was to determine wheather the application of half sine-wave pulsed electromagnetic fields (HSPEMF) could increase both the rate and amount of orthodontic tooth movement. Forty-three male Hartley guinea pigs, weighting approximately 255g, were utilized in this study. The animals were 35 days old at the start of the study. Laterally directed orthodontic force was applied to the maxillary central incisors of 40 Hartley guinea pigs (20 experimental, 20 control). According to the amount of orthodontic force (6g, 12g), they were divided into two sub-groups (10 experimental I, 10 experimental II, 10 control I, 10 control II). During the experimental period, experimental animals were placed in plastic animal holders with their heads positioned in an area of uniform electromagnetic field. Control animals were placed in similar plastic holders that did not carry the electric apparatus. The results were as follows : 1. The application of a HSPEMF to the experimental groups significantly increase the final amount of orthodontic tooth movement observed over a 10-day experimental period. 2. The application of a HSPEMF to the experimental groups significantly increase the velocity of orthodontic tooth movement observed over a 10-day experimental period. 3. There was no significant difference in the final amount of orthodontic tooth movement at the fourth day to the eighth day, but there was significant difference in the final amount of orthodontic tooth movement at the nineth, tenth day during a 10-day experimental period. 4. After 10 days of HSPEMF exposure & orthodontic force, the experimental groups demonstrated more osteodasts in the pressure side than control groups.

  • PDF