• Title/Summary/Keyword: pulsed electric field

Search Result 105, Processing Time 0.025 seconds

Silver nanowires and nanodendrites synthesized by plasma discharge in solution for the catalytic oxygen reduction in alkaline media

  • Kim, Hoe-Geun;Song, Myeon-Gyu;Kim, Dong-U;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.62-62
    • /
    • 2018
  • Pt is still considered as one of the most active electrocatalysts for ORR in alkaline fuel cells. However, the high cost and scarcity of Pt hamper the widespread commercialization of fuel cells. As a strong candidate for the replacement of Pt catalyst, silver (Ag) has been extensively studied due to its high activity, abundance, and low cost. Ag is more stable than Pt in the pH range of 8~14 as the equilibrium potential of Ag/Ag+ being ${\approx}200mV$ higher than that of Pt/PtO. However, Ag is the overall catalytic activity of Ag for oxygen reduction reaction(ORR) is still not comparable to Pt catalyst since the surface Ag atoms are approximately 10 times less active than Pt atoms. Therefore, further enhancement in the ORR activity of Ag catalysts is necessary to be competitive with current cutting-edge Pt-based catalysts. We demonstrate the architectural design of Ag catalysts, synthesized using plasma discharge in liquid phase, for enhanced ORR kinetics in alkaline media. An attractive feature of this work is that the plasma status controlled via electric-field could form the Ag nanowires or dendrites without any chemical agents. The plasma reactor was made of a Teflon vessel with an inner diameter of 80 mm and a height of 80 mm, where a pair of tungsten(W) electrodes with a diameter of 2 mm was placed horizontally. The stock solutions were made by dissolving the 5-mM AgNO3 in DI water. For the synthesis of Agnanowires, the electricfield of 3.6kVcm-1 in a 200-ml AgNO3 aqueous solution was applied across the electrodes using a bipolar pulsed power supply(Kurita, Seisakusyo Co. Ltd). The repetition rate and pulse width were fixed at 30kHz and 2.0 us, respectively. The plasma discharge was carried out for a fixed reaction time of 60 min. In case of Ag nanodendrites, the electric field of 32kVcm-1 in a 200-ml AgNO3 aqueous solution was applied and other conditions were identical to the plasma discharge in water in terms of electrode configuration, repetition rate and discharge time. Using SEM and STEM, morphology of Ag nanowires and dendrites were investigated. With 3.6 kV/cm, Ag nanowire was obtained, while Ag dendrite was constructed with 32 kV/cm. The average diameter and legth of Ag nanowireses were 50 nm and 3.5 um, and thoes values of Ag dendrites were 40 nm and 3.0 um. As a results of XPS analysis, the surface defects in the Ag nanowires facilitated O2 incorporation into the surface region via the interaction between the oxygen and the electron cloud of the adjacent Ag atoms. The catalytic activity of Ag for oxygen reduction reaction(ORR) showed that the catalytic ORR activity of Ag nanowires are much better than Ag nanodendrites, and electron transfer number of Ag nanowires is similar to that of Pt (${\approx}4$).

  • PDF

Physical Property Change of the Gapless Semiconductor $PbPdO_2$ Thin Film by Ex-situ Annealing

  • Choo, S.M.;Park, S.M.;Lee, K.J.;Jo, Y.H.;Park, G.S.;Jung, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.371-372
    • /
    • 2012
  • We have studied lead-based gapless semiconductors, $PbPdO_2$, which is very sensitive to external parameters such as temperature, pressure, electric field, etc[1]. We have fabricated pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films using the pulsed laser deposition. Because of the volatile element of Pb, it is very difficult to grow the films. Note that in case of $MgB_2$, Mg is also volatile element. So in order to enhance the quality of $MgB_2$, some experiments are carried out in annealing with Mg-rich atmosphere [2]. This annealing process with volatile element plays an important role in making smooth surface. Thus, we applied such process to our studies of $PbPdO_2$ thin films. As a result, we found the optimal condition of ex-situ annealing temperature ${\sim}650^{\circ}C$ and time ~12 hrs. The ex-situ annealing brought the extreme change of surface morphology of thin films. After ex-situ annealing with PbO-rich atmosphere, the grain size of thin film was almost 100 times enlarged for all the thin films and also the PbO impurity phase was smeared out. And from X-ray diffraction measurements, we determined highly crystallized phases after annealing. So, we measured electrical and magnetic properties. Because of reduced grain boundary, the resistivity of ex-situ annealed samples changed smaller than no ex-situ sample. And the carrier densities of thin films were decreased with ex-situ annealing time. In this case, oxygen vacancies were removed by ex-situ annealing. Furthermore, we will discuss the transport and magnetic properties in pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films in detail.

  • PDF

Development of Spontaneous Polarization of Epitaxial Iron-Excess Gallium Ferrite Thin Films

  • Oh, S.H.;Shin, R.H.;Lee, J.H.;Jo, W.;Lefevre, C.;Roulland, F.;Thomasson, A.;Meny, C.;Viart, N.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2012.05a
    • /
    • pp.121-122
    • /
    • 2012
  • Iron-excess gallium ferrite, $Ga_{0.6}Fe_{1.4}O_3$ (GFO), is known to have room-temperature ferromagnetic phases and potentially exhibit ferroelectricity as well [1]. But, leaky polarization-electric field (PE) hysteresis curves of the GFO thin film are hurdle to prove its spontaneous polarization, in other words, ferroelecticity. One of the reasons that the GFO films have leaky PE hysteresis loop is carrier hopping between $Fe^{2+}$ and $Fe^{3+}$ sites due to oxygen deficiency. We focus on reducing conducting current by substituting divalent cations at $Fe^{2+}$ sites. GFO thin films were grown epitaxially along b-axis normal to $SrRuO_3/SrTiO_3$ (111) substrates by pulsed laser deposition. Current density of the ion-substituted GFO thin films was reduced by $10^3$ or more. Ferroelectric properties of the ion-substituted GFO thin films were measured using macroscopic and microscopic schemes. In particular, local ferroelectric properties of the GFO thin films were exhibited and their remnant polarization and piezoelectric d33 coefficient were obtained.

  • PDF

Quality Changes and Pasteurization Effects of Citrus Fruit Juice by High Voltage Pulsed Electric Fields (PEF) treatment (고전압 펄스 전기장 처리에 의한 감귤주스의 품질변화)

  • Kim, Kyung-Tack;Kim, Sung-Soo;Hong, Hee-Do;Ha, Sang-Do;Lee, Young-Chun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.635-641
    • /
    • 2003
  • A non-thermal pasteurization technology, high Pulsed Electric Field (PEF) has been thought to be a new alternative processing technology instead of heating. The objective of this study was to examine and compare the effect of PEF and High Temperature Short Time (HTST) treatments on the physicochemical, microbiological and sensory characteristics of citrus juices. Total sugar and titratable acidity values of fresh citrus juice and two treatments were not significantly different each other at p<0.05. The concentration of vitamin C in fresh citrus juice $(31.2{\pm}0.59\;mg%)$ was not significantly different with the value of PEF treatment $(29.4{\pm}0.75\;mg%)$ but was significantly higher than the value of HTST treatment $(27.4{\pm}0.75\;mg%)$. The color values (L, a, and b) in PEF treatment were significantly lower than the fresh citrus juice, but were higher than the values of HTST treatment. Both total bacterial cell counts $(6.65\;{\pm}\;0.08\;log_{10}(cfu/mL))$ and yeast counts $(7.79{\pm}0.07\;log_{10}(cfu/mL))$ in fresh citrus juice were significantly reduced by PEF $(1.39{\pm}0.14,\;2.42{\pm}0.1\;log_{10}(cfu/mL))$ as well as HTST treatment (0, 0). PE activity of fresh citrus juice $(1.3{\pm}0.12\;units/mL)$ was significantly reduced by PEF treatment $(0.11{\pm}0.01\;units/mL)$ and was totally inactivated by HTST treatment. Sensory evaluation scores in flavor, taste and overall acceptability between the fresh and PEF treated citrus juices $(7.2{\sim}7.5)$ were not significantly different but the values of HTST treatment $(5.1{\sim}5.8)$ were lower than others. Consequently, PEF treatment is thought to be a good alternative pasteurization method for fresh citrus juice to HTST treatment due to its strong pasteurization effect, reduced destruction of nutrients and good sensory characteristics.

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.