• Title/Summary/Keyword: pulsed doped

Search Result 167, Processing Time 0.028 seconds

Fabrication of phosphorus doped ZnO thin film using multi-layer structure (다층 구조를 이용한 Phosphorus 도핑된 ZnO 박막 제작)

  • Kang, Hong-Seong;Lim, Sung-Hoon;Chang, Hyun-Woo;Kim, Gun-Hee;Kim, Jong-Hoon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.27-29
    • /
    • 2005
  • ZnO and phosphorus doped ZnO thin films (ZnO:P) are deposited by pulsed laser deposition grown on (001) $Al_{2}O_{3}$. ZnO/ZnO:P/ZnO/$Al_{2}O_{3}$ (multi-layer) structure was used for phosphorus doped ZnO fabrication. This multi-layer structure thin film was annealed at $400^{\circ}C$ for 40 min. The electron concentration of that was changed from $10^{19}$ to $10^{16}/cm^{-3}$ after annealing. ZnO thin films with encapsulated structure showed the enhanced structural and optical properties than phosphorus doped ZnO without encapsulated layer. In this study, encapsulated ZnO structure was suggested to enhance electrical, structural and optical properties of phosphorus doped ZnO thin film and it was identified that encapsulated structure could be used to fabricate high quality phosphorus doped ZnO thin film.

  • PDF

Phase change properties of BN doped GeSbTe films

  • Jang, Mun-Hyeong;Park, Seong-Jin;Park, Seung-Jong;Jeong, Gwang-Sik;Jo, Man-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.226-226
    • /
    • 2010
  • Boron Nitride (BN) doped GeSbTe films were grown by the ion beam sputtering deposition (IBSD). The in-situ sheet resistance data and the x-ray diffraction patterns showed the crystallization is suppressed due to the BN incorporation. The phase change speed in BN doped GeSbTe films were investigated using the static tester equipped with nanosecond pulsed laser. The phase change speed for BN doped GST films become faster than the corresponding values for an undoped GST film. The Johnson-Mehl-Avrami(JMA) plot and Avrami coefficient for laser crystallization showed that the change in growth mode during the laser crystallization is a most important factor for the phase change speed in the BN doped GST films. The JMA results and the atomic force microscopy (AFM) images indicate that the origin of the change in the crystalline growth mode is due to an increase in the number of initial nucleation sites which is produced by the incorporated BN. In addition, the retension properties for the laser writing/erasing are remarkably improved in BN doped GeSbTe films owing to the stability of the incorporated BN.

  • PDF

Thin film characteristics variation of static deposition and dynamic deposition by bipolar pulsed DC magnetron sputtering (Bipolar pulsed DC magnetron sputtering에서 정적 증착과 동적 증착에 의한 박막 특성 변화)

  • Yang, Won-Gyun;Ju, Jeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.149-149
    • /
    • 2009
  • 실제 산업에서 가장 많이 사용하고 있는 in-line type system에서 Al-doped ZnO (AZO) 막을 bipolar pulsed DC sputtering을 이용해 증착하였다. 약 30 nm/sec의 속도로 기판을 타겟 좌우로 swing 하면서 동적 증착 공정을 한 AZO 박막의 columnar structure가 정적 증착일 때와 다른 형태의 zigzag-type columnar structure가 형성되었다. 투명전도막의 가장 중요한 특성인 비저항과 투과도가 동적 증착 공정일 때의 박막과 정적 증착 공정일 때의 박막이 각각 $2.5{\times}10^{-3}{\Omega}{\cdot}cm$, 78.5%와 $1.65{\times}10^{-3}{\Omega}{\cdot}cm$, 83.9% 였다. 이렇게 성장하는 막의 구조 형태에 따라 달라지는 특성 변화는 양산하는 현장에서 매우 중요한 것이며, 동적 증착 공정에서의 박막 특성 개선에 정적 증착 공정과는 다른 방법의 연구가 필요할 것이다.

  • PDF

Consolidation of Thermal Electric Material Powder by MPC Process and Thermal Electric Properties (MPC 공정에 의한 열전반도체 분말의 성형 및 열전특성)

  • Yun, J.S.;Koo, J.M.;Kim, T.S.;Hong, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.454-456
    • /
    • 2009
  • N-Type $SbI_3$ doped $95%Bi_2Te_3+5%\;Bi_2Se_3$ compounds were newly fabricated by the combination of gas atomization process and Magnetic Pulsed Compaction process. The thermoelectric properties of the MPCed bulks according to consolidation temperatures were investigated by a combination of microscopy, XRD and thermoelectric property testing. The microstructure of MPCed bulk shows homogeneous and fine distribution through consolidated bulks due to the high solidification of compound powders. The research presented the challenges toward the successful consolidation of thermoelectric powder using magnetic pulsed compaction (MPC) and analysis of thermoelectric properties of the consolidated bulks.

  • PDF

Luminescence Characteristics of Red Light Emitting (YVO4:Eu Thin-Film Phosphors Deposited on Si Substrate Using Pulsed Laser Deposition

  • Kim, Dong-Kuk;Kang, Wee-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1859-1862
    • /
    • 2004
  • Europium doped yttrium vanadate ($YVO_4$:Eu) phosphor thin films were grown using a pulsed laser deposition (PLD) technique on silicon substrate. The structural characterization carried out on a series of ($YVO_4$:Eu films at post annealing temperature in the range of 550 $^{\circ}C$-1150 $^{\circ}C$ indicating that films were preferentially (200) oriented at post annealing temperature above 950 $^{\circ}C.$ Photoluminescence of thin film increased with the increase of post annealing temperature and ambient oxygen pressure though the thin film has the powder-like surface morphology at oxygen pressure above 200 mTorr. Photoluminescence decay from $^5D_1$ level of $Eu^{3+}$ show the great concentration dependency, which can be used as a good parameter to control the composition of ($YVO_4$:Eu thin film.

Consolidation of Thermoelectric Semiconductor Powder by MPC and Their Microstructure (MPC 공정에 의한 열전반도체 분말의 성형 및 미세조직)

  • Han, Tae-Bong;Hong, Soon-Jik
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.525-527
    • /
    • 2008
  • N-Type $SbI_3$-doped $95%{Bi_2}{Te_3}-5%{Bi_2}{Se_3}$ compounds were prepared by a gas atomization and Magnetic Pulsed Compaction process. The dynamic recrystallization and thermoelectric properties of the MPCed bulks with consolidation temperatures and times were investigated by a combination of microscopy, XRD and thermoelectric property testing. The microstructure of MPCed bulk shows homogeneous and fine distribution through consolidated bulks due to dynamic recrystallization during hot MPC. This research presented the challenges toward the successful consolidation of thermoelectric powder using magnetic pulsed compaction (MPC).

  • PDF