• Title/Summary/Keyword: pulsed doped

Search Result 167, Processing Time 0.026 seconds

Phase Evolution Behavior of (Bi,Nd)(Fe,Ti)$O_3$ Ceramics and Thin Films

  • Kim, Kyung-Man;Byun, Seung-Hyun;Yang, Pan;Lee, Yoon-Ho;Lee, Jai-Yeoul;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.331-332
    • /
    • 2008
  • Couplings between electric, magnetic, and structural order parameters result in the so-called multiferroic phenomena with two or more ferroic phenomena such as ferroelectricity, ferromagnetism, or ferroelasticity. The simultaneous ferroelectricity and ferromagnetism (magnetoelectricity) permits potential applications in information storage, spintronics, and magnetic or electric field sensors. The perovskite BiFeO3(BFO) is known to be antiferromagnetic below the Neel temperature of 647K and ferroelectric with a high Curie temperature of 1043K. It exhibits weak magnetism at room temperature due to the residual moment from a canted spin structure. It is likely that non-stoichiometry and second-phase formation are the factors responsible for leakage current in BFO. It has been suggested that oxygen non-stoichiometry leads to valence fluctuations of Fe ions in BFO, resulting in high conductivity. To reduce the large leakage current of BFO, one attempt is to make donor-doped BFO compounds and thin films. In this study, (Bi1-x,Ndx)(Fe1-y,Tiy)O3 thin films have been deposited on Pt(111)/TiO2/SiO2/Si substrates by pulsed laser deposition. The effect of dopants on the phase evolution and surface morphology are analyzed. Furthermore, electrical and magnetic properties are measured and their coupling characteristics are discussed.

  • PDF

전기화학적증착법(ECD)을 사용해 형성한 성장 시간에 따른 Al-doped ZnO 나노결정체의 구조적 성질 및 광학적 성질

  • Chu, Dong-Hun;Kim, Gi-Hyeon;No, Yeong-Su;Lee, Dae-Uk;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.262.2-262.2
    • /
    • 2013
  • ZnO는 광학적 및 전기적 성질의 여러 가지 장점 때문에 메모리, 나노발전기, 트랜지스터, 태양전지, 광탐지기 및 레이저와 같은 전자소자 및 광소자로 여러 분야에서 다양하게 사용되고 있다. Al이 도핑된 ZnO 나노결정체를 전기화학적 증착법을 이용하여 형성하고, 형성시간의 변화에 따른 구조적 및 광학적 성질을 관찰했다. ITO로 코팅된 유리 기판에 전기화학증착법을 이용해 Al 도핑된 ZnO를 성장시켰다. Sputtering, pulsed laser vapor deposition, 화학기상증착, atomic layer epitaxy, 전자빔증발법 등으로 Al 도핑된 ZnO 나노구조를 형성할 수 있지만, 본 연구에서는 간단한 공정과정, 저온증착, 고속, 저가의 특성 등으로 경제적인 면에서 효율적인 전기화학증착법을 이용했다. 반복실험을 통하여 Al의 도핑 농도는 Zn와 Al의 비율이 98:2이 되도록, ITO 양극과 Pt 음극의 전위차가 -2.25 V가 되도록 실험조건을 고정했고, 성장시간을 각각 1분, 5분, 10분으로 변화하였다. 주사전자현미경 사진을 보면 Al 도핑된 ZnO는 성장 시간이 증가함에 따라 나노구조의 직경이 커지는 것을 알 수 있다. 광루미네센스 측정 결과는 산소 공핍의 증가로 보이는 500~600 nm대의 파장에서 나타난 피크의 위치가 에너지가 큰 쪽으로 증가했다. 위 결과로부터 성장 시간에 따른 Al 도핑된 ZnO의 구조적 및 광학적 특성변화를 관찰했고, 이 연구 결과는 Al 도핑된 ZnO 나노구조 기반 전자소자 및 광소자에 응용 가능성을 보여주고 있다.

  • PDF

Immediate effect of Nd:YAG laser monotherapy on subgingival periodontal pathogens: a pilot clinical study

  • McCawley, Thomas K.;McCawley, Mark N.;Rams, Thomas E.
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • Purpose: This pilot study assessed the immediate in vivo effect of high peak pulse power neodymium-doped yttrium aluminum garnet (Nd:YAG) laser monotherapy on selected red/orange complex periodontal pathogens in deep human periodontal pockets. Methods: Twelve adults with severe periodontitis were treated with the Laser-Assisted New Attachment Procedure (LANAP®) surgical protocol, wherein a free-running, digitally pulsed, Nd:YAG dental laser was used as the initial therapeutic step before mechanical root debridement. Using a flexible optical fiber in a handpiece, Nd:YAG laser energy, at a density of 196 J/cm2 and a high peak pulse power of 1,333 W/pulse, was directed parallel to untreated tooth root surfaces in sequential coronal-apical passes to clinical periodontal probing depths, for a total applied energy dose of approximately 8-12 joules per millimeter of periodontal probing depth at each periodontal site. Subgingival biofilm specimens were collected from each patient before and immediately after Nd:YAG laser monotherapy from periodontal pockets exhibiting ≥6 mm probing depths and bleeding on probing. Selected red/orange complex periodontal pathogens (Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia/nigrescens, Fusobacterium nucleatum, Parvimonas micra, and Campylobacter species) were quantified in the subgingival samples using established anaerobic culture techniques. Results: All immediate post-treatment subgingival biofilm specimens continued to yield microbial growth after Nd:YAG laser monotherapy. The mean levels of total cultivable red/orange complex periodontal pathogens per patient significantly decreased from 12.0% pretreatment to 4.9% (a 59.2% decrease) immediately after Nd:YAG laser monotherapy, with 3 (25%) patients rendered culture-negative for all evaluated red/orange complex periodontal pathogens. Conclusions: High peak pulse power Nd:YAG laser monotherapy, used as the initial step in the LANAP® surgical protocol on mature subgingival biofilms, immediately induced significant reductions of nearly 60% in the mean total cultivable red/orange complex periodontal pathogen proportions per patient prior to mechanical root instrumentation and the rest of the LANAP® surgical protocol.

Electrochemical Characteristics of Zn and Si Ion-doped HA Films on Ti-6Al-4V by PEO Treatment

  • Lim, Sang-Gyu;Hwang, In-Jo;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.199-199
    • /
    • 2016
  • Commercially pure titanium (cp-Ti) and Ti alloys (typically Ti-6Al-4V) display excellent corrosion resistance and biocompatibility. Although the chemical composition and topography are considered important, the mechanical properties of the material and the loading conditions in the host have, conventionally. Ti and its alloys are not bioactive. Therefore, they do not chemically bond to the bone, whereas they physically bond with bone tissue. The electrochemical deposition process provides an effective surface for biocompatibility because large surface area can be served to cell proliferation. Electrochemical deposition method is an attractive technique for the deposition of hydroxyapatite (HAp). However, the adhesions of these coatings to the Ti surface needs to be improved for clinical used. Plasma electrolyte oxidation (PEO) enables control in the chemical com position, porous structure, and thickness of the $TiO_2$ layer on Ti surface. In addition, previous studies h ave concluded that the presence of $Ca^{+2}$ and ${PO_4}^{3-}$ ion coating on porous $TiO_2$ surface induced adhesion strength between HAp and Ti surface during electrochemical deposition. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation, and is also the most abundant trace element in bone. The objective of this work was to study electrochemical characteristcs of Zn and Si coating on Ti-6Al-4V by PEO treatment. The coating process involves two steps: 1) formation of porous $TiO_2$ on Ti-6Al-4V at high potential. A pulsed DC power supply was employed. 2) Electrochemical tests were carried out using potentiodynamic and AC impedance methoeds. The morphology, the chemical composition, and the micro-structure an alysis of the sample were examined using FE-SEM, EDS, and XRD. The enhancements of the HAp forming ability arise from $Si/Zn-TiO_2$ surface, which has formed the reduction of the Si/Zn ions. The promising results successfully demonstrate the immense potential of $Si/Zn-TiO_2$ coatings in dental and biomaterials applications.

  • PDF

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

The Effect of the Addition of BZO Nanopowder in the YBCO PLD Targets on the Flux Pinning Properties of BZO-YBCO Thin Film (YBCO PLD 타겟에 BZO 나노분말 첨가에 따른 PLD-YBCO 박막의 자속고정 효과)

  • Song, K.J.;Ko, R.K.;Lee, Y.S.;Park, Y.M.;Yang, J.S.;Kim, H.S.;Ha, H.S.;Ha, D.W.;Kim, S.W.;Oh, S.S.;Kim, D.J.;Park, C.;Yoo, S.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.20-21
    • /
    • 2005
  • [ $BaZrO_3$ ], nanopowder was added to YBCO powder to make ($BazrO_3)_x(YBCO)_{(100-x)mol.-%}$ ($BZO_x$-YBCO) ($0{\leq}x{\leq}10$) composite targets fur pulsed laser deposition of superconducting layer in order to investigate the effect of the addition of BZO nanopowder in the YBCO target on the flux pinning properties of $BZO_x$-YBCO thin films. All the $BZO_x$-YBCO thin films were grown on single crystal STO substrate under similar conditions in the PLD chamber. The effect of YBCO targets doped with BZO on the flux pinning properties of $BZO_x$-YBCO thin films has been investigated comparatively. The isothermal magnetizations M(H) of the films were measured at temperatures between 5 and 80 K in fields up to 5 T, employing a PPMS. The optimal amount of BZO nanopowders in $BZO_x$-YBCO thin films to obtain the strongest flux pinning effects at high magnetic fields is about 6 mol.-%.

  • PDF

Comparisons of lasing characteristics of InGaAs quantum-dot and quantum well laser diodes (InGaAs 양자점 레이저 다이오드와 양자우물 레이저 다이오드의 특성 비교)

  • Jung, Kyung-Wuk;Kim, Kwang-Woong;Ryu, Sung-Pil;Cho, Nam-Ki;Park, Sung-Jun;Song, Jin-Dong;Choi, Won-Jun;Lee, Jung-Il;Yang, Hae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.5
    • /
    • pp.371-376
    • /
    • 2007
  • We have investigated the lasing characteristics of the InGaAs quantum dot laser diode (QD-LD) and InGaAs quantum well laser diode (QW-LD) operated at the 980 nm wavelength range. The 980-nm lasers are used as a pumping source for a erbium-doped fiber amplifier (EDFA) and it shows high efficiency in long-haul optical fiber network. We have compared the threshold current density, the characteristic temperature, the optical power and the internal efficiency of QD-LD and QW-LD under a pulsed current condition. The QD-LD shows superior performances to the QW-LD. Further optimization of a LD structure is expected to the superior performances of a QD-LD.