• 제목/요약/키워드: pulse-like ground motion

검색결과 14건 처리시간 0.025초

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • 제29권2호
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

Seismic fragility curves using pulse-like and spectrally equivalent ground-motion records

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • 제19권2호
    • /
    • pp.79-90
    • /
    • 2020
  • 4- and 8-storey reinforced-concrete frame buildings are analyzed under the suites of the near-fault pulse-like, and the corresponding spectrally equivalent far-fault ground-motion records. Seismic fragility curves for the slight, moderate, extensive, and complete damage states are developed, and the damage probability matrices, and the mean loss ratios corresponding to the Design Basis Earthquake and the Maximum Considered Earthquake hazard levels are compared, for the investigated buildings and sets of ground-motion records. It is observed that the spectrally equivalent far-fault ground-motion records result in comparable estimates of the fragility curve parameters, as that of the near-fault pulse-like ground-motion records. As a result, the derived damage probability matrices and mean loss ratios using two suites of ground-motion records differ only marginally (of the order of ~10%) for the investigated levels of seismic hazard, thus, implying the potential for application of the spectrally equivalent ground-motion records, for seismic fragility and risk assessment at the near-fault sites.

교량의 지진취약도에 대한 속도 펄스를 가진 지반운동의 영향 (Effect of Velocity-Pulse-Like Ground Motions on Seismic Fragility of Bridges)

  • 김예은;꽁씨나;꽁씨닛;문지호;송종걸
    • 한국전산구조공학회논문집
    • /
    • 제37권2호
    • /
    • pp.119-131
    • /
    • 2024
  • 일반적으로 속도 펄스를 가진 지반운동이 속도 펄스가 없는 지반운동에 비하여 구조물에 보다 큰 손상을 줄 수 있다고 알려져 있다. 지진가속도기록으로부터 속도 펄스의 유무의 판정과 이를 정량화하는 연구가 현재 많이 진행되어 오고 있다. 기존 지진기록들을 단층으로 떨어진 거리를 기준으로 원거리 지진과 근거리 지진으로 구분하였다. 또한, 근거리 지진은 속도 펄스의 유무를 정량화하여 펄스를 가진 지진과 펄스를 가지지 않은 지진으로 구분하였다. 최종적으로 각 지진그룹별로 40개의 원거리지진, 40개의 속도 펄스를 가진 근거리 지진과 40개의 속도 펄스를 가지지 않은 근거리 지진을 선정하였으며, 총 120개 지진가속도 기록을 지진취약도 평가를 위한 지진해석에 사용하였다. 세 그룹의 지진을 이용하여 납-고무받침과 탄성받침을 가진 두 종류의 예제교량에 대한 지진응답을 평가하여 확률론적 지진요구도 모델을 작성하였다. 확률론적 지진요구도 모델을 이용하여 지진취약도 해석을 수행하여 속도 펄스의 유무에 따른 지진취약도 영향을 분석하였다. 지진파의 속도 펄스 유무에 따른 지진취약도 곡선의 비교 결과로부터, 속도 펄스를 가진 지진의 지진취약도가 속도 펄스가 없는 지진의 지진취약도가 약 3배~5배 정도 정도 크게 나타난다. 이는 속도 펄스를 가진 지진의 경우가 그렇지 않은 지진의 경우에 비하여 교량의 손상 피해가 크다는 것을 의미한다.

Characterization and modeling of near-fault pulse-like strong ground motion via damage-based critical excitation method

  • Moustafa, Abbas;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.755-778
    • /
    • 2010
  • Near-fault ground motion with directivity or fling effects is significantly influenced by the rupture mechanism and substantially different from ordinary records. This class of ground motion has large amplitude and long period, exhibits unusual response spectra shapes, possesses high PGV/PGA and PGD/PGA ratios and is best characterized in the velocity and the displacement time-histories. Such ground motion is also characterized by its energy being contained in a single or very few pulses, thus capable of causing severe damage to the structures. This paper investigates the characteristics of near-fault pulse-like ground motions and their implications on the structural responses using new proposed measures, such as, the effective frequency range, the energy rate (in time and frequency domains) and the damage indices. The paper develops also simple mathematical expressions for modeling this class of ground motion and the associated structural responses, thus eliminating numerical integration of the equations of motion. An optimization technique is also developed by using energy concepts and damage indices for modeling this class of ground motion for inelastic structures at sites having limited earthquake data.

Effectiveness of design procedures for linear TMD installed on inelastic structures under pulse-like ground motion

  • Quaranta, Giuseppe;Mollaioli, Fabrizio;Monti, Giorgio
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.239-260
    • /
    • 2016
  • Tuned mass dampers (TMDs) have been frequently proposed to mitigate the detrimental effects of dynamic loadings in structural systems. The effectiveness of this protection strategy has been demonstrated for wind-induced vibrations and, to some extent, for seismic loadings. Within this framework, recent numerical studies have shown that beneficial effects can be achieved by placing a linear TMD on the roof of linear elastic structural systems subjected to pulse-like ground motions. Motivated by these positive outcomes, closed-form design formulations have been also proposed to optimize the device's parameters. For structural systems that undergo a near-fault pulse-like ground motion, however, it is unlikely that their dynamic response be linear elastic. Hence, it is very important to understand whether such strategy is effective for inelastic structural systems. In order to provide new useful insights about this issue, the paper presents statistical results obtained from a numerical study conducted for three shear-type hysteretic (softening-type) systems having 4, 8 and 16 stories equipped with a linear elastic TMD. The effectiveness of two design procedures is discussed by examining the performances of the protected systems subjected to 124 natural pulse-like earthquakes.

EFFECTS OF NEAR-FIELD PULSE-LIKE GROUND MOTIONS ON TALL BUILDINGS

  • K. Malhotra, Praveen
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.3-11
    • /
    • 1998
  • Response of tall buildings to near-field ground motions with distinct low-frequency pulses can differ dramatically from, for example, the response to the 1940 El Centro ground motion. For the same peak ground acceleration (PGA) and duration of shaking, ground motions with a pulse-like characteristic can generate much higher base shear, inter-story drifts and roof displacement in a high-rise building as compared to ground motions without the characteristic pulse. Also, the ductility demand is much higher and the effectiveness of supplemental damping is lower for pulse-like ground motions. This paper presents a simple interpretation of the response characteristics for two recorded and one synthetic near-field pulse-like ground motions.

  • PDF

Evaluation of pulse effect on frequency content of ground motions and definition of a new characteristic period

  • Yaghmaei-Sabegh, Saman
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.457-471
    • /
    • 2021
  • This study aims at providing a simple and effective methodology to define a meaningful characteristic period for special class of earthquake records named "pulse-like ground motions". In the proposed method, continuous wavelet transform is employed to extract the large pulse of ground motions. Then, Fourier amplitude spectra obtained from the original ground motion and the residual motion is simply compared. This comparison permits to define a threshold pulse-period (Tp∗) as the threshold period above which the pulse component has negligible contributions to the Fourier amplitude spectrum. The effect of pulse on frequency content of motions was discussed on the light of this definition. The advantage and superior features of the new definition were related to the inelastic displacement ratio (IDR) for single-degree-of-freedom systems with period equal to one half of the threshold period. Analyses performed for the proposed period at three ductility levels u=2,4,6 were compared with the results obtained at half of pulse period derived from wavelet analysis, peak-point method and the peak of product of the velocity and the displacement response spectra (Sv x Sd). According to the results, pulse effects on inelastic displacement ratio seem to be more important when $\frac{T_p^*}{T}=2$ (T is the fundamental vibration period of system). The results showed that utilizing of the proposed definition could facilitate an enhanced understanding of pulse-like records features.

Response of self-centering braced frame to near-field pulse-like ground motions

  • Rahgozar, Navid;Moghadam, Abdolreza S.;Aziminejad, Armin
    • Structural Engineering and Mechanics
    • /
    • 제62권4호
    • /
    • pp.497-506
    • /
    • 2017
  • A low damage self-centering braced frame equipped with post-tensioning strands is capable of directing damage to replaceable butterfly-shaped fuses. This paper investigates the seismic performance of rocking braced frame under near-field pulse-like ground motions compared to far-field records. A non-linear time history analysis is performed for twelve self-centering archetypes. A sensitivity analysis is carried out to examine the influences of ground motion types and modeling parameters. Findings represent the proper efficiency of the self-centering system under both far-field and near-field pulse-like ground motions.

Seismic response of nuclear containment structures due to recorded and simulated near-fault ground motions

  • Kurtulus Soyluk;Hamid Sadegh-Azar;Dersu Yilmaz
    • Structural Engineering and Mechanics
    • /
    • 제87권5호
    • /
    • pp.431-450
    • /
    • 2023
  • In this study, it is intended to perform nonlinear time-history analyses of nuclear power plant structures (NPP) under near-fault earthquakes showing directivity pulse and fling-step characteristics. Simulation procedures based on cycloidal pulse and far-fault ground motions are also used to simulate near-fault motions showing forward-directivity and fling-step characteristics and the structural responses are compared with those of the recorded near-fault ground motions. Because it is aimed to determine specifically the pulse type characteristics of near-fault ground motions on NPPs, all the ground motions are normalized to have a PGA of 0.3 g. Depending on the obtained results it can be underlined that although near-fault ground motion has the potential to cause damage mostly on structural systems having larger periods, it may also have noticeable effects on the responses of rigid structures, like NPP containment buildings. On the other hand, simulated near-fault motions can help us to get an insight into the near-fault mechanism as well as an approximate visualization of the structural responses under near-fault earthquakes.

On the improvement of inelastic displacement demands for near-fault ground motions considering various faulting mechanisms

  • Esfahanian, A.;Aghakouchak, A.A.
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.673-698
    • /
    • 2015
  • This paper investigates inelastic seismic demands of the normal component of near-fault pulse-like ground motions, which differ considerably from those of far-fault ground motions and also parallel component of near-fault ones. The results are utilized to improve the nonlinear static procedure (NSP) called Displacement Coefficient Method (DCM). 96 near-fault and 20 far-fault ground motions and the responses of various single degree of freedom (SDOF) systems constitute the dataset. Nonlinear Dynamic Analysis (NDA) is utilized as the benchmark for comparison with nonlinear static analysis results. Considerable influences of different faulting mechanisms are observed on inelastic seismic demands. The demands are functions of the strength ratio and also the pulse period to structural period ratio. Simple mathematical expressions are developed to consider the effects of near-fault motion and fault type on nonlinear responses. Modifications are presented for the DCM by introducing a near-fault modification factor, $C_N$. In locations, where the fault type is known, the modifications proposed in this paper help to obtain a more precise estimate of seismic demands in structures.