• 제목/요약/키워드: pulse width distortion

검색결과 109건 처리시간 0.021초

간이 스위칭법에 의한 단상 역률개선형 컨버터 (The Single Phase Converter of Power Factor Collection Type with Simple Switching Method)

  • 문경희;고강훈;김은수;곽동걸;조판제;이현우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.323-326
    • /
    • 1999
  • For decrease the harmonic current components of the power source, a first method is insert the choke coil that used the choke input type rectifier, the booster chopper circuit and buck chopper circuit. And the several method are studying like as the PWM(Pulse Width Modulation) converter and the active filter type which is used the high frequency switching and the sinusoidal wave formed input current. In this type, there are many problem as a low efficiency, increased the noise, the high leakage current and cost up by the high frequency switching. For improve this problems, the partial resonan method is used on the booster inducter and lossles snubber condenser. This method decreased the distortion factor has lower harmonic components than the hard switching and there is no switching loss by the ZCS(Zero Current Switching) at switch turn-on and the ZVS(Zero Voltage Swithcing) at switch turn-off

  • PDF

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Choi Y.K.;Ko T.G.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.987-993
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Furthermore, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3kVA modules are designed and implemented to confirm the effectiveness of the proposed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristic.

  • PDF

PWM Control Techniques for Single-Phase Multilevel Inverter Based Controlled DC Cells

  • Sayed, Mahmoud A.;Ahmed, Mahrous;Elsheikh, Maha G.;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.498-511
    • /
    • 2016
  • This paper presents a single-phase five-level inverter controlled by two novel pulse width modulation (PWM) switching techniques. The proposed PWM techniques are designed based on minimum switching power loss and minimum total harmonic distortion (THD). In a single-phase five-level inverter employing six switches, the first proposed PWM technique requires four switches to operate at switching frequency and two other switches to operate at line frequency. The second proposed PWM technique requires only two switches to operate at switching frequency and the rest of the switches to operate at line frequency. Compared with conventional PWM techniques for single-phase five-level inverters, the proposed PWM techniques offer high efficiency and low harmonic components in the output voltage. The validity of the proposed PWM switching techniques in controlling single-phase five-level inverters to regulate load voltage is verified experimentally using a 100 V, 500 W laboratory prototype controlled by dspace 1103.

An Improved Phase-Shifted Carrier PWM for Modular Multilevel Converters with Redundancy Sub-Modules

  • Choi, Jong-Yun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.473-479
    • /
    • 2016
  • In this paper, the PSC PWM method is chosen as the optimal modulation method for a 20MW VSC HVDC, with consideration of the harmonic distortion of the output voltage, the switching frequency, and the control implementation difficulty. In addition, a new PSC PWM method is proposed in order to achieve an easy application and to solve the redundant control problems encountered in the previous PSC PWM method. To verify the proposed PSC PWM method, PSCAD/EMTDC simulations for an 11-level MMC RTDS HILS test and an 11-level MMC prototype converter test were performed. As can be seen from the results of these tests, the proposed PSC PWM method shows good results in an 11-level MMC with redundant sub-modules.

Analysis, Design and Implementation of an Interleaved Single-Stage AC/DC ZVS Converters

  • Lin, Bor-Ren;Huang, Shih-Chuan
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.258-267
    • /
    • 2012
  • An interleaved single-stage AC/DC converter with a boost converter and an asymmetrical half-bridge topology is presented to achieve power factor correction, zero voltage switching (ZVS) and load voltage regulation. Asymmetric pulse-width modulation (PWM) is adopted to achieve ZVS turn-on for all of the switches and to increase circuit efficiency. Two ZVS half-bridge converters with interleaved PWM are connected in parallel to reduce the ripple current at input and output sides, to control the output voltage at a desired value and to achieve load current sharing. A center-tapped rectifier is adopted at the secondary side of the transformers to achieve full-wave rectification. The boost converter is operated in discontinuous conduction mode (DCM) to automatically draw a sinusoidal line current from an AC source with a high power factor and a low current distortion. Finally, a 240W converter with the proposed topology has been implemented to verify the performance and feasibility of the proposed converter.

Analysis of the Admittance Component for Digitally Controlled Single-Phase Bridgeless PFC Converter

  • Cho, Younghoon;Mok, Hyungsoo;Lai, Jih-Sheng
    • Journal of Power Electronics
    • /
    • 제13권4호
    • /
    • pp.600-608
    • /
    • 2013
  • This paper analyzes the effect of the admittance component for the digitally controlled single-phase bridgeless power factor correction (PFC) converter. To do this, it is shown how the digital delay effects such as the digital pulse-width modulation (DPWM) and the computation delays restrict the bandwidth of the converter. After that, the admittance effect of the entire digital control system is analyzed when the bridgeless PFC converter which has the limited bandwidth is connected to the grid. From this, the waveform distortion of the input current is explained and the compensation method for the admittance component is suggested to improve the quality of the input current. Both the simulations and the experiments are performed to verify the analyses taken in this paper for the 1 kW bridgeless PFC converter prototype.

출력 상전압을 이용한 멀티-캐리어 PWM 기법의 간단한 고조파 분석 방법 (The Simple Harmonic Analysis Method of the Multi-Carrier PWM Techniques by Using the Output Phase Voltage in the Multi-Level Inverter)

  • 김준성;김태진;강대욱;현동석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제52권7호
    • /
    • pp.352-360
    • /
    • 2003
  • This paper deals with a simple method in order to analyze and compare the harmonic characteristics in the multi-level inverter. Generally, the magnitude of harmonic components becomes different according to the multi-carrier Pulse Width Modulation(PWM) techniques, the modulation index($M_i$) and the switching frequency The previous papers analyzed the harmonic characteristics from the viewpoint of the space voltage vector. Hence, the calculation of the harmonic vector becomes more difficult and complex in 4-level or over 5-level. However, the proposed method has reduced an amount of calculation and simplified the process of it, using the relationship between the reference voltage and the output phase voltage to the load neutral point. It is applied to the 5-level cascade inverter and the harmonic characteristics for each multi-carrier PWM technique are compared through the simulation.

The Improvement Effect of Input Current Waveform of Two New Main Switching Boost Rectifiers

  • Ha, Sung-Hyun;Kim, Chang-Il;Kim, Soo-Wook;Nam, Jing-Rak;Mun, Sang-Pil
    • 조명전기설비학회논문지
    • /
    • 제22권3호
    • /
    • pp.15-26
    • /
    • 2008
  • This paper proposes a new sinusoidal rectifier which improves input factor and input current waveform without complicated switching modulation such as pulse width or a complicated feed back control. The proposed rectifier consists of a pair of capacitors connected in series, a full bridge diode rectifier, a pair of inductors, and a pair of switching devices connected in series. While the configuration of the sinusoidal rectifier is simple in itself, it effectively reduces the reactive power and harmonics involved(IEC555-2 SC77A90 Class C) in input line current. The excellent properties of the new sinusoidal rectifier are verified by theoretical analysis and experimental results.

Analysis and Design of a PFC AC-DC Converter with Electrical Isolation

  • Lin, Chia-Ching;Yang, Lung-Sheng;Zheng, Ren-Jun
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.874-881
    • /
    • 2014
  • This study presents a single-phase power factor correction AC-DC converter that operates in discontinuous conduction mode. This converter uses the pulse-width modulation technique to achieve almost unity power factor and low total harmonic distortion of input current for universal input voltage $90V_{rms}$ to $264V_{rms}$) applications. The converter has a simple structure and electrical isolation. The magnetizing-inductor energy of the transformer can be recycled to the output without an additional third winding. The steady-state analysis of voltage gain and boundary operating conditions are discussed in detail. Finally, experimental results are shown to verify the performance of the proposed converter.

Asymmetrical PWM for Harmonics Reduction and Power Factor Improvement in PWM AC Choppers Using Bee Colony Optimization

  • Sanjit, Panithi;Aurasopon, Apinan
    • Journal of Power Electronics
    • /
    • 제15권1호
    • /
    • pp.227-234
    • /
    • 2015
  • This paper presents the application of bee colony optimization (BCO) to obtain the optimal switching angles for single phase PWM AC choppers. The optimal switching angles are found in the region of 0-${\pi}$ based on the asymmetrical PWM technique. This PWM process results in improvements of the total harmonic distortion of the output voltage and in the input power factor. Simulation and experimental results are compared with the conventional PWM to verify the performance of the proposed PWM process.