• 제목/요약/키워드: pulse width distortion

검색결과 109건 처리시간 0.027초

Single-Delta Bridge Cell MMC의 전압합성을 위한 PWM 반송파 형태에 따른 출력전압의 THD 분석 (THD Analysis of Output Voltage According to PWM Carriers in Single-Delta Bridge Cell MMC)

  • 김재명;정재정
    • 전력전자학회논문지
    • /
    • 제27권6호
    • /
    • pp.526-534
    • /
    • 2022
  • The modular multilevel converter (MMC) has been widely applied to various industrial areas because of its various advantages and structural characteristics. Therefore, many methods for synthesizing the output voltage of MMC have been studied. Among these methods, phase-shifted pulse width modulation (PSPWM) is frequently used in MMC systems because it has diverse merits, such as excellent output qualities even with a small number of cells and uniform power distribution among cells. In this study, the total harmonic distortion (THD) of the output voltage is analyzed in accordance with the number of cells in one arm of a single-delta bridge cell MMC in order to compare PSPWM methods in terms of the THD of the output voltage. The physical characteristics of the triangle and sawtooth carrier waves used for the PSPWM and the mathematical modeling of output voltage are introduced. Then, the obtained results are verified through real-time simulation of a 1 MW single-delta bridge cell MMC system.

전압원인버어터의 최적스위칭패턴 (Optimal Switching Pattern of Voltage Source Inverter)

  • 정필선;정동화;이윤종
    • 한국통신학회논문지
    • /
    • 제12권4호
    • /
    • pp.386-398
    • /
    • 1987
  • 本 論文은 PWM(Pulse Width Modulation)인버어터의 스위칭作用에 의해서 發生하는 高周波 影響을 最小化하기 위한 Suboptimal PAWM(Pulse Amplitude Width Modulation)을 提示하였다. 本 方式은 Suboptimal PWM에서 THD(Total Harmonic Distorition)가 最小가 되는 固定點(基本波 電壓 u1=1.2)에서 하나의 스위칭패턴을 決定하였다. 그리고 電壓은 DC Link에서 DC Chopper에 의해 制御하게 하고 인버어터에서는 단지 高周波만을 制御하도록 하였다. 本 方式은 3相 誘導電動機의 VSD(Variable Speed Drive)에 適用하여 電動機의 騷音, 인버어터의 線間電壓 및 電流, 電流高周波 스펙트럼을 測定하였으며, 他 方式과 比較해 보았다. 그 結果로부터 本 方式의 妥當性을 立證할 수 있었다.

  • PDF

전기차용 전력변환장치의 펄스 폭 변조 기법 분석 (Analysis of Pulse Width Modulation Schemes for Electric Vehicle Power Converters)

  • ;채상헌;김일환;양승용;부창진;김호찬
    • 전기학회논문지
    • /
    • 제65권12호
    • /
    • pp.2225-2231
    • /
    • 2016
  • In order to overcome the problem of fossil fuel energy, electric vehicle (EV) has been used in recent years. The important issues of EV are driving distance and lifetime related to EV efficiency. A voltage source converter is one of the main components of EV which can be operated with various pulse width modulation (PWM) schemes such as continuous PWM schemes and discontinuous PWM schemes. These PWM schemes will cause the effects on the efficiency of converter system and the lifetime of EV. Therefore, this paper proposes an analysis of the PWM schemes for the power converter on the EV. The objective is to find out a best solution for the EV by comparing the total harmonic distortion (THD) and transient response between the various PWM schemes. The operation of traction motor on the EV with the PWM schemes will be verified by using Psim simulation program.

Analysis and Implementation of PS-PWAM Technique for Quasi Z-Source Multilevel Inverter

  • Seyezhai, R.;Umarani, D.
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.688-698
    • /
    • 2018
  • Quasi Z-Source Multilevel Inverter (QZMLI) topology has attracted grid connected Photovoltaic (PV) systems in recent days. So there is a remarkable research thrust in switching techniques and control strategies of QZMLI. This paper presents the mathematical analysis of Phase shift- Pulse Width Amplitude Modulation (PS-PWAM) for QZMLI and emphasizes on the advantages of the technique. The proposed technique uses the maximum and minimum envelopes of the reference waves for generation of pulses and proportion of it to generate shoot-through pulses. Hence, it results in maximum utilization of input voltage, lesser switching loss, reduced Total Harmonic Distortion (THD) of the output voltage, reduced inductor current ripple and capacitor voltage ripple. Due to these qualities, the QZMLI with PS-PWAM emerges to be the best suitable for PV based grid connected applications compared to Phase shift-Pulse Width Modulation (PS-PWM). The detailed math analysis of the proposed technique has been disclosed. Simulation has been performed for the proposed technique using MATLAB/Simulink. A prototype has been built to validate the results for which the pulses were generated using FPGA /SPARTAN 3E.

마이크로스트립 미앤더 선로의 신호 왜곡 현상 연구 (The Study on Signal Distortion of Meander-shaped Microstrip Line)

  • 두진경;홍영표;김정민;육종관
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.197-202
    • /
    • 2005
  • In this paper, we analyzed the signal distortion incorporating meander-shaped transmission line on PCB in broadband frequency range, up to 50GHz. This broadband characteristic provides reasonable analysis of digital pulse having very short rising time. Simulation results reveal suppression characteristic at multiband which is dependent on only the width of meander arm. This width of arm also can be adjusted using different permittivity because it provides different effective wave-length. It is found that the suppression characteristic shows sharpness with as a function of the number of arms. However, these characteristics shown limitation for microstrip line structure rather than for stripline structure, so we can avoid these unwanted phenomena using stripline structure.

  • PDF

Real time Implementation of SHE PWM in Single Phase Matrix Converter using Linearization Method

  • Karuvelam, P. Subha;Rajaram, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1682-1691
    • /
    • 2015
  • In this paper, a real time implementation of selective harmonic elimination pulse width modulation (SHEPWM) using Real Coded Genetic Algorithm (RGA), Particle Swarm Optimization technique (PSO) and a new technique known as Linearization Method (LM) for Single Phase Matrix Converter (SPMC) is designed and discussed. In the proposed technique, the switching frequency is fixed and the optimum switching angles are obtained using simple mathematical calculations. A MATLAB simulation was carried out, and FFT analysis of the simulated output voltage waveform confirms the effectiveness of the proposed method. An experimental setup was also developed, and the switching angles and firing pulses are generated using Field Programmable Gate Array (FPGA) processor. The proposed method proves that it is much applicable in the industrial applications by virtue of its suitability in real time applications.

A Kalman Filter based Predictive Direct Power Control Scheme to Mitigate Source Voltage Distortions in PWM Rectifiers

  • Moon, Un-chul;Kim, Soo-eon;Chan, Roh;Kwak, Sangshin
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.190-199
    • /
    • 2017
  • In this paper, a predictive direct power control (DPC) method based on a Kalman filter is presented for three-phase pulse-width modulation (PWM) rectifiers to improve the performance of rectifiers with source voltages that are distorted with harmonic components. This method can eliminate the most significant harmonic components of the source voltage using a Kalman filter algorithm. In the process of predicting the future real and reactive power to select an optimal voltage vector in the predictive DPC, the proposed method utilizes source voltages filtered by a Kalman filter, which can mitigate the adverse effects of distorted source voltages on control performance. As a result, the quality of the source currents synthesized using the PWM rectifier is improved, and the total harmonic distortion (THD) values are reduced, even under distorted source voltages.

Analysis, Design, and Implementation of a High-Performance Rectifier

  • Wang, Chien-Ming;Tao, Chin-Wang;Lai, Yu-Hao
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.905-914
    • /
    • 2016
  • A high-performance rectifier is introduced in this study. The proposed rectifier combines the conventional pulse width modulation, soft commutation, and instantaneously average line current control techniques to promote circuit performance. The voltage stresses of the main switches in the rectifier are lower than those in conventional rectifier topologies. Moreover, conduction losses of switches in the rectifier are certainly lower than those in conventional rectifier topologies because the power current flow path when the main switches are turned on includes two main power semiconductors and the power current flow path when the main switches are turned off includes one main power semiconductor. The rectifier also adopts a ZCS-PWM auxiliary circuit to derive the ZCS function for power semiconductors. Thus, the problem of switching losses and EMI can be improved. In the control strategy, the controller uses the average current control mode to achieve fixed-frequency current control with stability and low distortion. A prototype has been implemented in the laboratory to verify circuit theory.

Comparative Study on SVPWM Switching Sequences for VSIs

  • Vivek, G.;Biswas, Jayanta;Nair, Meenu D.;Barai, Mukti
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.133-142
    • /
    • 2018
  • Paper presents a comparative study of space vector pulse width modulation (SVPWM) switching sequences for Voltage Source Inverters (VSIs). Various SVPWM switching sequences are studied for two and three level VSIs in linear modulation index region. The computations of dwell times are presented for two and three level VSIs based on space vector geometry in a synchronized and optimized manner. The existing SVPWM switching sequences are implemented using Matlab / Simulink and in an experimental setup for three phase two and three level VSIs. The simulation and experimental waveforms of conventional SVPWM (CSVPWM) and bus clamped SVPWM (BCSVPWM) are demonstrated for two and three level inverter respectively. The performance of different SVPWM switching sequences are evaluated and presented based on weighted voltage total harmonic distortion (THD).

임펄스 신호 방사를 위한 IR-UWB용 테이퍼 슬롯 안테나 설계 및 성능평가 (Design and Performance Evaluation of IR-UWB Tapered Slot Antenna for Optimum Impulse Radio Radiation)

  • 김종민;고영목;나극환
    • 한국ITS학회 논문지
    • /
    • 제11권5호
    • /
    • pp.103-115
    • /
    • 2012
  • 본 논문에서는 임펄스를 방사하기 위한 IR-UWB용 테이퍼 슬롯 안테나(Tapered Slot Antenna: TSA) 설계와 성능평가에 대해 연구하였다. UWB 대역에서 지향성 특성을 갖는 테이퍼 슬롯 안테나는 낮은 방사손실과, 임펄스 방사왜곡이 최소이어야 한다. 이를 위해 광대역 임피던스 변환기와 마이크로스트립-슬롯라인 천이부 구조를 갖는 테이퍼 슬롯 안테나 급전부를 설계하였다. 설계 및 제작된 테이퍼 슬롯 안테나는 전파 무반사실에서 방사패턴을 측정하였으며, 임펄스 방사에 따른 시간영역 특성을 평가하기 위해 펄스충실도 및 왜곡율 수식을 유도하였다. 제작된 테이퍼 슬롯 안테나의 임펄스 방사에 의한 펄스충실도는 ${\pm}30^{\circ}$ 빔폭 내에서 약 93% 이상의 양호한 결과를 얻었다.