• Title/Summary/Keyword: pulse analyzer

Search Result 153, Processing Time 0.033 seconds

Adsorption of residual gases on carbon nanotubes and their field emission properties

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Kim, Jin-Hee;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.51-51
    • /
    • 2008
  • Carbon nanotubes (CNTs) have long been reported as an ideal material due to their excellent electrical conductivity and chemical and mechanical stability as well as their high aspect ratios for field emission devices. CNT emitters made by screen printing the organic binder-based CNT paste may act as a source to release gases inside a vacuum panel. These residual gases may cause a catastrophic damage by electrical arcing or ion bombardment to the vacuum microelectronic devices and may change their physical or electrical properties by adsorbing on the CNT emitter surface. In this study, we analyzed the composition of residual gases inside the vacuum-sealed panel by residual gas analyzer (RGA), investigating the effects of individual gases of different kinds at several pressures on the field emission characteristics of CNT emitters. The residual gases included $H_2$, CO, $CO_2$, $N_2$, $CH_4$, $H_2O$, $C_2H_6$, and Ar. Effect of residual gases on the field emission was studied by observing the variation of the pulse voltages with the duty ratio of3.3% to keep the constant emission current of $28{\mu}A$. Each gas species was introduced to a vacuum chamber up to three different pressures ($5\times10^{-7}$, $5\times10^{-6}$, and $5\times10^{-5}$ torr) each for 1 h while electron emission was continued. The three different pressure regions were separated by keeping a high vacuum of $\sim10^{-8}$ torr for a 1 h. The emission was terminated 6 h after the third gas exposure was completed. Field emission characteristics under residual gases will be discussed in terms of their adsorption and desorption on the surface of CNTs and the resultant change of work function.

  • PDF

Survey for Needs of Bio-Signal Devices for the Diagnosis, Assessment, or Analysis of Neurocognitive Disorder in Korean Society of Oriental Neuropsychiatry (인지 장애 진단·평가·분석을 위한 생체신호 장비 개발에 대한 수요조사: 한방신경정신과학회 회원들을 대상으로)

  • Choi, Yujin;Kim, Ji Hye;Kim, Kahye;Kim, Jaeuk
    • Journal of Oriental Neuropsychiatry
    • /
    • v.31 no.2
    • /
    • pp.89-99
    • /
    • 2020
  • Objectives: The purpose of this study was to identify the needs of bio-signal devices for the diagnosis, assessment, and analysis of neurocognitive disorder in Korean medicine (KM) hospitals and clinics. Methods: A questionnaire was developed to survey the current status of medical device use, and diagnosis and interventions for patients with cognitive disorders in KM hospitals and clinics. November 11~December 2, 2019, 114 responses (71.9% completed) were collected by internet-based questionnaires from the members of the Korean society of Oriental Neuropsychiatry. Results: The clinical requests were in the descending order of hematology analyzer, ultrasound imaging system, and electroencephalography among the 15 most commonly used devices of which research would support for their clinical usability. The biosignal-based devices showed the highest research demands for patients with mild cognitive impairment rather than more severe stages of cognitive impairment. Prevention rather than diagnosis, or several treatment regimens was the strongest clinical area of the KM for patients with neurodegenerative cognitive impairment. Many responded that five to 10 minutes of test duration and 20,000 won to 30,000 won of cost would be appropriated for a new device to be developed. Conclusions: There were strong demands for the development of bio-signal devices for neurocognitive disorders among the KM doctors. Specifically, it showed high needs for the technology that can be used in the prevention area of cognitive disorders. Additionally, new medical devices to assess cognitive functions and to obtain KM pattern-related information were the high needs.

Analysis of Underwater Noise in the North Sea (북해에서의 수중소음분석)

  • 윤갑동
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 1985
  • The underwater noise was measured by piezo-electric hydrophones submerged in the water at three different depths. The signals were led through connection cables to preamplifiers, and recorded simultaneously by a four channel tape recorder, and analysed by high resolution signal analyzer. The measurements were carried out at the fjord Skossvassen in archipelago off Bergen and at the cost of Norway in the North Sea. The results of the measurements and the analysis showed that the underwater noise consists of a steady broad band noise superposed by intermittent pulse of various strength. The noise levels measured in fjord Skossvassen indicated that they were generally higher at the shallow (10m) hydrophone than at the deeper hydrophone (25m, 50m). This tendency was not very distinct, however, the noise sources are close to the surface. The underwater noise spectrums measured in the open sea of Norway showed almost similar situation in all layers. This tendency showed that the noise sources are not close to the surface but they are far away from the measuring positions.

  • PDF

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

V3Si 나노입자 메모리소자의 열적안정성 및 전하누설 근원분석

  • Kim, Dong-Uk;Lee, Dong-Uk;Jo, Seong-Guk;Kim, Eun-Gyu;Lee, Se-Won;Jeong, Seung-Min;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.302-302
    • /
    • 2012
  • 최근 비 휘발성 메모리 시장의 확대와 수요가 많아지면서, 비휘발성 메모리 소자의 제작에 대한 연구가 활발히 진행되고 있다. 특히, 실리사이드 나노입자를 적용한 소자는 현 실리콘 기반의 반도체 공정의 적용이 용이하다. 따라서 본 연구에서는 실리사이드 계열의 화합물 중에서 일함수가 4.63 eV인 Vanadium silicide (V3Si) 나노입자 메모리소자를 제작하여 전기적 특성과 열 안정성에 대하여 알아보았다. p-Si기판에 약 6nm 두께의 SiO2 터널층을 건식 산화 방법으로 성장시킨 후 V3Si 나노입자를 제작하기 위해서 V3Si 금속박막을 스퍼터링 방법으로 4 nm~6 nm의 두께로 터널 절연막 위에 증착시켰다. 그리고 컨트롤 절연막으로 SiO2를 초고진공 스퍼터를 이용하여 50 nm 증착하였고, 급속 열처리 방법으로 질소 분위기에서 $800^{\circ}C$의 5초 동안 열처리하여 V3Si 나노 입자를 형성하였다. 마지막으로 200 nm두께의 Al을 증착하고, 리소그래피 공정을 통하여 채널 길이와 너비가 각각 $2{\mu}m$, $5{\mu}m$, $10{\mu}m$를 가지는 트랜지스터를 제작하였다. 제작된 시편의 V3Si 나노입자의 크기와 균일성은 투과 전자 현미경으로 확인하였고, 후 열처리 공정 이후 V3Si의 존재여부의 확인을 위해서 X-ray 광전자 분광법의 표면분석기술을 이용하여 확인하였다. 소자의 전기적인 측정은 Agilent E4980A LCR meter, 1-MHz HP4280A와 HP 8166A pulse generator, HP4156A precision semiconductor parameter analyzer을 이용하여 측정온도를 $125^{\circ}C$까지 변화시키면서 전기적인 특성을 확인하였다. 본 연구에서는 온도에 선형적 의존성을 가지는 전하누설 모델인 T-model 을 이용하여 나노입자 비휘발성 메모리소자의 전하누설 근원을 확인한 후, 메모리 소자의 동작 특성과의 물리적인 연관성을 논의하였다. 이를 바탕으로 나노입자 비휘발성 메모리소자의 열적안정성을 확보하고 소자 특성향상을 위한 최적화 구조를 제안하고자 한다.

  • PDF

스퍼터링 및 후 열처리 기법에 의한 V3Si 나노입자 형성과 비휘발성 메모리소자 응용

  • Kim, Dong-Uk;Lee, Dong-Uk;Lee, Hyo-Jun;Jo, Seong-Guk;Kim, Eun-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.301-301
    • /
    • 2011
  • 최근 고밀도 메모리 반도체의 재료와 빠른 응답을 요구하는 나노입자를 이용한 비휘발성 메모리 소자의 제작에 대한 연구가 활발히 진행되고 있다. 그에 따른 기존의 플래쉬 메모리가 가지는 문제점을 개선하기 위해서 균일하고 규칙적으로 분포하는 새로운 나노소재의 개발과 비휘발성, 고속 동작, 고집적도, 저전력 소자의 공정기술이 요구되고 있다. 또한 부유게이트에 축적되는 저장되는 전하량을 증가시키기 위한 새로운 소자구조 개발이 필요하다. 한편, 실리 사이드 계열의 나노입자는 금속 나노입자와 달리 현 실리콘 기반의 반도체 공정에서 장점을 가지고 있다. 따라서 본 연구에서는 화합물 중에서 비휘발성 메모리 장치의 전기적 특성을 향상 시킬 수 있는 실리사이드 계열의 바나듐 실리사이드(V3Si) 박막을 열처리 과정을 통하여 수 nm 크기의 나노입자로 제작하였다. 소자의 제작은 p-Si기판에 실리콘산화막 터널층(5 nm 두께)을 건식 산화법으로 성장 후, 바나듐 실리사이드 금속박막을 RF 마그네트론 스퍼터 시스템을 이용하여 4~6 nm 두께로 터널 베리어 위에 증착하고, 그 위에 초고진공 마그네트론 스퍼터링을 이용하여 SiO2 컨트롤 산화막층 (20 nm)을 형성시켰다. 여기서 V3Si 나노입자 형성을 위해 급속 열처리법으로 질소 분위기에서 800$^{\circ}C$로 5초 동안 열처리하여 하였으며, 마지막으로 열 기화 시스템을 통하여 알루미늄 전극(직경 200 ${\mu}m$, 두께 200 nm)을 증착하여 소자를 제작하였다. 제작된 구조는 금속 산화막 반도체구조를 가지는 나노 부유게이트 커패시터이며, 제작된 시편은 투사전자현미경을 이용하여 나노입자의 크기와 균일성을 확인했다. 소자의 전기적인 측정을 E4980A capacitor parameter analyzer와 Agilent 81104A pulse pattern generator system을 이용한 전기용량-전압 측정을 통해 전하저장 효과 및 메모리 동작 특성들을 분석하고, 열처리 조건에 따라 형성되는 V3Si 의 조성을 엑스선 광전자 분광법을 이용하여 확인하였다.

  • PDF

Determination of Bromine, Arsenic, Mercury, and Selenium in Plant by Neutron Activation Analysis (방사화분석법에 의한 식물 중의 Br, As, Hg, Se의 정량)

  • Chun, Sea-Yull
    • Korean Journal of Food Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.144-149
    • /
    • 1971
  • The sensitive technique of activation analysis is well suited for this study since the elements such as As, Br, and Se in tobaccoes are expected to be high concentration. As, Br, and Hg were determined by Bethge destruction method and subsequent neutron activation analysis. $^{77m}Se$ was also by non-destruction activation analysis. The quantities of the element determined in Korean tobaccoes are given as follows in ppm: As, 0.65 ppm. Hg, 0.74 ppm. Se, 1.18 ppm. Br, 7.1 ppm. From the date given it seems that Korean tobaccoes and foreign tobaccoes contained considerably high concentration of selenium and mercury.

  • PDF

A case study of aerosol features of Asian dust, fog, clear sky, and cloud at Anmyeon Island in April 2006 (2006년 4월 안면도에서 발생한 황사, 안개, 청명, 구름 사례에 대한 에어러솔 특성 분석)

  • Goo, Tae-Young;Hong, Gi-Man;Kim, Sang-Beak;Gong, Jong-Ung;Kim, Myoung-Soo
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.97-109
    • /
    • 2008
  • The aerosol characteristics in terms of 4 different cases (Asian dust, fog, clear sky and cloud) which had happened at Anmyeon Island in April 2006 were studied using various measurements such as the Micro Pulse Lidar (MPL), sunphotometer, $\beta$-ray $PM_{10}$ Analyzer, anemoscope and anemometer. In addition, synoptic charts, back trajectory analyses and satellite images were also used to help characterize the aerosol events. The aerosol optical properties were featured by the Aerosol Optical Depth (AOD) and ${\AA}ngstr\ddot{o}m$ exponent which were estimated by the sunphotometer. When Anmyeon Island was dominated by the Asian dust, the AOD was sharply increased as seven times as a yearly average of it (0.35). As compared with a yearly average of the ${\AA}ngstr\ddot{o}m$ exponent of 0.97, the ${\AA}ngstr\ddot{o}m$ exponent of a dust day was significantly low (0.099). In addition, $PM_{10}$ mass concentration showed an extremely high record. The maximum concentration reached $1790.5{\mu}gm^{-3}$ on 8 April 2006. The maximum mass concentration was shown with delay when the wind speed of $0ms^{-1}$ was observed. It was also found that a satellite image of the MODIS-RGB had a good agreement with the results of those measurements. It was shown that the MPL was able to describe effectively the vertical distribution of aerosol for all the cases. In particular, the MPL evidently captured the aerosol layer before the cloud observation. The aerosol layer was similarly described by the AOD. On a clear sky day, the AOD had not only a very low value (0.054) but also a feature of homogeneity.

A Simultaneous Determination of Chromium, Iron, Lanthanum, Scandium and Zinc in River Water by Neutron Activation (중성자 방사화에 의한 시료중의 크롬, 철, 란탄, 스칸듐 및 아연의 동시정량)

  • Lee Ihn Chong;Kim Si-Joong;Lee Chul
    • Journal of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.427-433
    • /
    • 1977
  • A neutron activation method has been developed for the simultaneous determination of chromium, iron, lanthanum, scandium and zinc in river-water samples. The sample is sealed in the silica ampoule without pretreatment and irradiated for a week at a thermal neutron flux of $1{\times}10^{13}n{\cdot}cm^{-2}{\cdot}sec^{-1}$. After cooling for about two days, the elements in the sample are sequentially extracted at different pH by 0.1M oxine-chloroform solution. The organic layers are checked by Gamma-ray spectrometry with $″3\;{\times}\;3″$ NaI (T1) detector connected to a 800-channel pulse hight analyzer. The ppb concentration of the elements in most of river-water samples could be determined by this method. The tracer study for the quantitative separation of the elements was also carried out.

  • PDF

An Improved Method for the Determination of Scandium by Neutron Activation Analysis (스칸듐定量을 위한 改良된 放射化分析法)

  • Chung, Koo-Soon;Lee, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.88-91
    • /
    • 1964
  • A rapid and simple method is described here for the determination of scandium in monazite by neutron activation analysis. The sample is irradiated for 20 hours at the neutron flux of $10^{12}$ thermal neutrons/$cm^2$/sec in the TRIGA MARK Ⅱ reactor, after which the sample is decomposed by fusion with concentrated sulfuric acid. The scandium-46 together with scandium carrier are separated from the irradiated sample by precipitating with ammonia, and are extracted by solvent extraction of the thiocyanate complex into ether. The induced radioactivity is measured by gamma scintillation spectrometry using the Multichannel Pulse Height Analyzer connected with 2"${\times}$2" NaI(Tl). The chemical yield is determined gravimetrically by precipitating scandium with mandelic acid. In order to check the efficiency of scandium separation and the errors from interfering activities of the other elements, scandium was separated by the cation exchange resin column, and the results from both samples were compared each other, which showed that the chemical procedure used in this work was as selective as the ion-exchange method with respect to scandium separation. The scandium contents in Korean monazite were found to be about 12 p. p. m.

  • PDF