• Title/Summary/Keyword: puff model

Search Result 32, Processing Time 0.022 seconds

Impact of boundary layer simulation on predicting radioactive pollutant dispersion: A case study for HANARO research reactor using the WRF-MMIF-CALPUFF modeling system

  • Lim, Kyo-Sun Sunny;Lim, Jong-Myung;Lee, Jiwoo;Shin, Hyeyum Hailey
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.244-252
    • /
    • 2021
  • Wind plays an important role in cases of unexpected radioactive pollutant dispersion, deciding distribution and concentration of the leaked substance. The accurate prediction of wind has been challenging in numerical weather prediction models, especially near the surface because of the complex interaction between turbulent flow and topographic effect. In this study, we investigated the characteristics of atmospheric dispersion of radioactive material (i.e. 137Cs) according to the simulated boundary layer around the HANARO research nuclear reactor in Korea using the Weather Research and Forecasting (WRF)-Mesoscale Model Interface (MMIF)-California Puff (CALPUFF) model system. We examined the impacts of orographic drag on wind field, stability calculation methods, and planetary boundary layer parameterizations on the dispersion of radioactive material under a radioactive leaking scenario. We found that inclusion of the orographic drag effect in the WRF model improved the wind prediction most significantly over the complex terrain area, leading the model system to estimate the radioactive concentration near the reactor more conservatively. We also emphasized the importance of the stability calculation method and employing the skillful boundary layer parameterization to ensure more accurate low atmospheric conditions, in order to simulate more feasible spatial distribution of the radioactive dispersion in leaking scenarios.

A Study on Fine Dust Modeling for Air Quality Prediction (미세먼지 확산 모델링을 이용한 대기질 예측 시스템에 대한 연구)

  • Yoo, Ji-Hyun
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1136-1140
    • /
    • 2020
  • As air pollution caused by fine dust becomes serious, interest in the spread of fine dust and prediction of air quality is increasing. The causes of fine dust are very diverse, and some fine dust naturally occurs through forest fires and yellow dust, but most of them are known to be caused by air pollutants from burning fossil fuels such as petroleum and coal or from automobile exhaust gas. In this paper, the CALPUFF model recommended by the US EPA is used, and CALPUFF diffusion modeling is performed by generating a wind field through the CALMET model as a meteorological preprocessing program that generates a three-dimensional wind field, which is a meteorological element required by CALPUFF. Through this, we propose a fine dust diffusion modeling and air quality prediction system that reflects complex topography.

A Impact Analysis of Air Quality by Air Pollution Control Facilities Improvement on Point Source Pollution (점오염원의 대기오염방지시설 개선에 의한 대기질 영향 분석)

  • Jeon, Byeong-Geun;Lee, Sang-Houck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2876-2882
    • /
    • 2015
  • The object of this study is to identify changes in air pollution in the maximum ground level concentration and the surrounding area when air pollution control facilities are improved in the thermal power plants. The effects of improved facilities are analyzed by comparing air quality after applying improved air pollution control facilities. For prediction of air quality, the change of wind field can be represented with movement of Puff and CALPUFF Model, air pollution diffusion models which can implement abnormal conditions. Major air pollutants of thermal power plants such as $SO_2$, $NO_2$, and $PM_{10}$ are selected as prediction items. That results show that improvement of air pollution control facilities is significantly effective in reduction of air pollution of $SO_2$ and $NO_2$ in the maximum ground level concentration and areas around of thermal power plants. In the case of $PM_{10}$, it is found that the effect of reduction in pollution is high in the maximum ground level concentration, but the effect of reduction in air pollution is somewhat low in the area around of the thermal power plant.

A Numerical Study on the Short-term Dispersion of Toxic Gaseous and Solid Pollutant in an Open Atmosphere : Chemical Species, Temperature, Relative Velocity (고-기상 독성오염물질 단기 대기확산에 관한 수치해석적 연구 : 화학종, 온도, 상대속도)

  • 나혜령;이은주;장동순;서영태
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.68-80
    • /
    • 1995
  • A series of parametric calculations have been performed in order to investigate the short-term and short-range plume and puff behavior of toxic gaseous and solid pollutant dispersion in an open atmosphere. The simulation is made by the use of the computer program developed by this laboratory, in which a control-volume based finite-difference method is used together with the SIMPLEC algorithm for the resolution of the pressure-velocity coupling appeared In Wavier-Stokes equation. The Reynolds stresses are solved by the standard two-equation k-$\varepsilon$ model modified for buoyancy together with the RNG(Renormalization Group) k-$\varepsilon$ model. The major parameters considered in this calculation are pollutant gas density and temperature, the relative velocity of pollutants to that of the surrounding atmospheric air, and particulate size and density together with the height released. The flow field is typically characterized by the formation of a strong recirculation region for the case of the low density gases such as $CH_4$ and air due to the strong buoyancy, while the flow is simply declining pattern toward the downstream ground for the case of heavy molecule like the $CH_2C1_2$and $CCl_4$, even for the high temperature, $200^{\circ}C$. The effect of gas temperature and velocity on the flow field together with the particle trajectory are presented and discussed in detail. In general, the results are physically acceptable and consistent.

  • PDF

Dispersion Model of Initial Consequence Analysis for Instantaneous Chemical Release (순간적인 화학물질 누출에 따른 초기 피해영향 범위 산정을 위한 분산모델 연구)

  • Son, Tai Eun;Lee, Eui Ju
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • Most factories deal with toxic or flammable chemicals in their industrial processes. These hazardous substances pose a risk of leakage due to accidents, such as fire and explosion. In the event of chemical release, massive casualties and property damage can result; hence, quantitative risk prediction and assessment are necessary. Several methods are available for evaluating chemical dispersion in the atmosphere, and most analyses are considered neutral in dispersion models and under far-field wind condition. The foregoing assumption renders a model valid only after a considerable time has elapsed from the moment chemicals are released or dispersed from a source. Hence, an initial dispersion model is required to assess risk quantitatively and predict the extent of damage because the most dangerous locations are those near a leak source. In this study, the dispersion model for initial consequence analysis was developed with three-dimensional unsteady advective diffusion equation. In this expression, instantaneous leakage is assumed as a puff, and wind velocity is considered as a coordinate transform in the solution. To minimize the buoyant force, ethane is used as leaked fuel, and two different diffusion coefficients are introduced. The calculated concentration field with a molecular diffusion coefficient shows a moving circular iso-line in the horizontal plane. The maximum concentration decreases as time progresses and distance increases. In the case of using a coefficient for turbulent diffusion, the dispersion along the wind velocity direction is enhanced, and an elliptic iso-contour line is found. The result yielded by a widely used commercial program, ALOHA, was compared with the end point of the lower explosion limit. In the future, we plan to build a more accurate and general initial risk assessment model by considering the turbulence diffusion and buoyancy effect on dispersion.

Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

  • Kim, Jong-Ho;Kwak, Byoung-Kyu;Ha, Min-A;Cheong, Hae-Kwan;Yi, Jong-Heop
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.8.1-8.10
    • /
    • 2012
  • Objectives: The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods: We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the results with previous observation data. The concentrations were compared with the currently used air quality standards. Results: Evaporation was found to be 10- to 1,000-fold higher than the emissions produced from a surrounding industrial complex. The modeled concentrations for benzene failed to meet current labor environmental standards, and the concentration of benzene, toluene, orthometa- para-xylene were higher than the values specified by air quality standards and guideline values on the ocean. The concentrations of total VOCs were much higher than indoor environmental criteria for the entire Taean area for a few days. Conclusions: The extent of airborne exposure was clearly not the same as that for normal conditions.

Trigeminal Neuralgia like Pain Behavior Following Compression of the Rat Trigeminal Ganglion

  • Yang, Gwi-Y.;Mun, Jun-H.;Park, Yoon-Y.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.34 no.3
    • /
    • pp.157-164
    • /
    • 2009
  • We recently described a novel animal model of trigeminal neuropathic pain following compression of the trigeminal ganglion (Ahn et al., 2009). In our present study, we adapted this model using male Sprague-Dawley rats weighing between 250-260 g and then analyzed the behavioral responses of these animals following modified chronic compression of the trigeminal ganglion. Under anesthesia, the rats were mounted onto a stereotaxic frame and a 4% agar solution ($10{\mu}L$) was injected in each case on the dorsal surface of the trigeminal ganglion to achieve compression without causing injury. In the control group, the rats received a sham operation without agar injection. Air-puff, acetone, and heat tests were performed at 3 days before and at 3, 7, 10, 14, 17, 21, 24, 30, 40, 55, and 70 days after surgery. Compression of the trigeminal ganglion produced nociceptive behavior in the trigeminal territory. Mechanical allodynia was established within 3 days and recovered to preoperative levels at approximately 60 days following compression. Mechanical hyperalgesia was also observed at 7 days after compression and persisted until the postoperative day 40. Cold hypersensitivity was established within 3 days after compression and lasted beyond postoperative day 55. In contrast, compression of the trigeminal ganglion did not produce any significant thermal hypersensitivity when compared with the sham operated group. These findings suggest that compression of the trigeminal ganglion without any injury produces prolonged nociceptive behavior and that our rat model is a useful system for further analysis of trigeminal neuralgia.

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

Prediction of radioactivity releases for a Long-Term Station Blackout event in the VVER-1200 nuclear reactor of Bangladesh

  • Shafiqul Islam Faisal ;Md Shafiqul Islam;Md Abdul Malek Soner
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.696-706
    • /
    • 2023
  • Consequences of an anticipated Beyond Design Basis Accident (BDBA) Long-Term Station Blackout (LTSBO) event with complete loss of grid power in the VVER-1200 reactor of Rooppur Nuclear Power Plant (NPP) of Unit-1 are assessed using the RASCAL 4.3 code. This study estimated the released radionuclides, received public radiological dose, and ground surface concentration considering 3 accident scenarios of International Nuclear and Radiological Event Scale (INES) level 7 and two meteorological conditions. Atmospheric transport, dispersion, and deposition processes of released radionuclides are simulated using a straight-line trajectory Gaussian plume model for short distances and a Gaussian puff model for long distances. Total Effective Dose Equivalent (TEDE) to the public within 40 km and radionuclides contribution for three-dose pathways of inhalation, cloudshine, and groundshine owing to airborne releases are evaluated considering with and without passive safety Emergency Core Cooling System (ECCS) in dry (winter) and wet (monsoon) seasons. Source term and their release rates are varied with the functional duration of passive safety ECCS. In three accident scenarios, the TEDE of 10 mSv and above are confined to 8 km and 2 km for the wet and dry seasons, respectively in the downwind direction. The groundshine dose is the most dominating in the wet season while the inhalation dose is in the dry season. Total received doses and surface concentration in the wet season near the plant are higher than those in the dry season due to the deposition effect of rain on the radioactive substances.

Glia Dose not Participate in Antinociceptive Effects of Gabapentin in Rats with Trigeminal Neuropathic Pain

  • Yang, Kui-Y.;Kim, Hak-K.;Jin, Myoung-U.;Ju, Jin-S.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.37 no.3
    • /
    • pp.121-129
    • /
    • 2012
  • Previous clinical studies have demonstrated that gabapentin, a drug that binds to the voltage-gated calcium channel ${\alpha}2{\delta}1$ subunit proteins, is effective in the management of neuropathic pain, but there is limited evidence that addresses the participation of glial cells in the antiallodynic effects of this drug. The present study investigated the participation of glial cells in the anti-nociceptive effects of gabapentin in rats with trigeminal neuropathic pain produced by mal-positioned dental implants. Under anesthesia, the left mandibular second molar was extracted and replaced by a miniature dental implant to induce injury to the inferior alveolar nerve. Mal-positioned dental implants significantly decreased the air-puff thresholds both ipsilateral and contralateral to the injury site. Gabapentin was administered intracisternally beginning on postoperative day (POD) 1 or on POD 7 for three days. Early or late treatment with 0.3, 3, or 30 ${\mu}g$ of gabapentin produced significant anti-allodynic effect in the rats with mal-positioned dental implants. On POD 9, in the mal-positioned dental implants group, OX-42, a microglia marker, and GFAP, an astrocyte marker, were found to be up-regulated in the medullary dorsal horn, compared with the naive group. However, the intracisternal administration of gabapentin (30 ${\mu}g$) failed to reduce the number of activated microglia or astrocytes in the medullary dorsal horn. These findings suggest that gabapentin produces significant antinociceptive effects, which are not mediated by the inhibition of glial cell function in the medullary dorsal horn, in a rat model of trigeminal neuropathic pain.