• Title/Summary/Keyword: pseudomonas putida

Search Result 298, Processing Time 0.029 seconds

A Fluctuation of Soil Microflora in Upland Soil Treated with Metalaxyl, Carbofuran and Simazine (Metalaxyl, Carbofuran, Simazine을 처리한 밭토양에서의 미생물수의 변동)

  • Lee, Wang-Hyu;Kim, Ju-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.220-226
    • /
    • 1998
  • The effects of metalaxyl(granule), carbofuran(granule) and simazine(water soluble powder) on the soil microflora were conducted at field soil between Iksan and Chonju province. Pesticides were divided into 0.5, 1, 1.5 and 2.0 times of normal of field, respectively. The number of fluorescent Pseudomonas was ranged from $10^3$ to $10^6/g$ in both field soil treated with cabofuran. Pseudomonas concentration of Chonju field soil slowly increased and approached the maximum level at 56 day after treatment(DAT). It showed the higher at 14DAT than other DAT in Iksan field soil treated with metalaxyl or simazine, whereas it increased again at 112 DAT in metalaxyl treatment. Cabofuran treatment of both field soil showed maximum Pseudomonas number at 28 DAT compared to that of other treatments. In Chonju field soil, those Pseudomonads of metalaxyl and simazine treatment increased the highest level at 7 DAT. Simazine treatment decreased it's number from the beginning of experiment. In both soil, metalaxyl treatment decrease the general fungi number at 7 DAT, but increase at 14 and 56 DAT in Iksan field soil. However it increased at 56 DAT in Chonju field soil. Cabofuran treatment of Iksan field soil tended to decrease general fungi number at 28 DAT, but was ranged from 1.0 to $8.6{\times}104/g$ for the rest of experimental period. It started to increase at 56 DAT simazine treatment of Iksan. General bacterial concentration both soil treated with cabofuran was belong to $26.6{\sim}29.6{\times}106$. It was the highest at 56 DAT, but was not significantly different. General actinomyces number was highly increased at 7 and 112 DAT compared to that of other DAT. Pseudomonas putida or P. fluorescens from both field soil was separated and identified 10 to 30 of all 104 Pseudomonas, respectively. All isolated microorganisms showed chemical resistance of 100ppm metalaxyl, cabofuran and simazine treatment.

  • PDF

Serobiological Characteristics and Antibiotic Sensitivity of Pseudomonas spp. Isolated from Spring Waters in Seoul Area (서울근교 약수터에서 분리한 Pseudomonas속균의 혈청생화학적 특성 및 항균제 감수성)

  • Park, Seog-Gee;Kim, Moo-Sang;Ham, Hee-Jin;Kim, Eun-Jung;Hwang, Kwan-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 1998
  • In order to investigate the species, serobiological characteristics and antibiotic sensitivity of Pseudomonas spp, we isolated Pseudomonas spp from 57 spring waters around Seoul area for spring, summer and autumn and identified Pseudomonas spp by biochemical characteristics and serological method. And also we tested the antibiotic sensitivity test by discdiffusion method. Of 57 spring waters tested, Pseudomonas spp were isolated from 33 spring waters(57.9%). Isolation rate of Pseudomonas spp in spring season was 28.1%, summer 21.1% and autumn 28.1%. Only 1 spring water was detected Pseudomonas spp in all seasons and 9 (15.8%) were detected for 2 seasons and 13 (22.8%) were for only 1 season. Isolation rate of Pseudomonas spp at Mt. Cheonggye was 50% and followed by Mt. Bookhan 35.7%, Mt. Daemo 33.3%, Mt. Dobong 29.6%, Mt. Surak 25.9%, Mt. Woomyun 22.2% and Mt. Bulam 7.4%. Of 44 Pseudomonas spp, 22 strains (50%) were identified by Ps. putida, Ps. aeruginosa, Ps. fluorescens and Ps. mendocina were identified 6 strains (13.6%), respectively. 4 strains (9.1%) were identified by Ps. aureofaciens. Of 6 Ps. aeruginosa, serotype A was 2 strains, B, E, G, and K was 1 strain, respectively. Of 44 Pseudomonas spp, resistance rate to amoxicillin was 90.9% and followed by chloramphenicol 84.1%, tetracycline 84.1%, carbenicillin 81.8%, nalidixic acid 68.2%, neomycin 38.6%, streptomycin 31.8%, gentamicin 4.6%, kanamycin 4.6% and colistin 2.3%. Ps. aeruginosa was more sensitive to carbenicillin than other Pseudomonas spp isolated from spring waters in Seoul area but more resistant to kanamycin, and Ps. aureofaciens was no resistant to streptomycin. Among multiple drug resistance, resistance to 5 drugs was 31.8%, 4 drugs 15.9%, 7 drugs 13.6%, 1 drug and 2 drugs 4.6%, and 8 drugs 2.3%, respectively. The multiple resistance patterns detected highestly were NA-CB-C-TE-AMC (18.2%), NA-CB-N-C-TE-AMC (13.6%), CBC-TE-AMC (11.4%) and NA-CB-N-C-TE-AMC-S (9.1%).

  • PDF

Occurrence and Biological Control of Postharvest Decay in Onion Caused by Fungi

  • Lee, Joon-Taek;Bae, Dong-Won;Park, Seun-Hee;Shim, Chang-Ki;Kwak, Youn-Sig;Kim, Hee-Kyu
    • The Plant Pathology Journal
    • /
    • v.17 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • Postharvest decay of onion bulbs was examined by inspecting the commercial packages in the market or in storage. Bulb rot incidence was unexpectedly high, and onion bulbs with 1st quality grade were rotten most severely by 51%, followed by 32% for 2nd and 21% for 3rd grades. This indicates that larger bulbs had higher incidences of bulb rots. Major pathogens associated with basal and neck rots were Fusarium oxysporum and Aspergillus sp. or Botrytis allii, respectively, of which basal rot was most prevalent and damaging during storage. Among the epiphytic microorgani는 from onion plants, several Bacillus and Paenibacillus spp. and previously selected Pseudomonas putida and Trichoderma harzianum had inhibitory efficacy against bulb rot pathogens. Among these B. amyloliquefaciens BL-3, Paenibacillus polymyxa BL-4, and P. putida Cha 94 were highly inhibitory to conidial germination of F. oxysporum and B. allii. P. putida Cha 94, B. amyloliquefaciens BL-3, P. polymyxa BL-4, and T. harzianum TM were applied in the rhizoplane of onion at transplanting. Initially antagonist populations decreased rapidly during the first one month. However, among these antagonists, rhizoplane population densities of BL-3, Cha 94, and TM were consistently high thereafter, maintaining about 10$^4$-10$^{5}$ cells or spores per gram of onion root up to harvest time. The other bacterial antagonist BL-4 survived only for two months. TM was the most effective biocontrol agent against basal rot, with the number of rotten bulbs recorded at 4%, while that of the control was 16%. Cha 94 was effective for the first 20 days, but basal rot increased thereafter and had about the same control efficacy as that of BL-3 and BL-4. When the antagonists were applied to the topping areas of onion bulbs at harvest, TM was the most effective in protecting the stored onion bulbs from neck rotting. The second effective antagonist was BL-3. TM and BL-3 completely suppressed the neck rot in another test, suggesting that biocontrol of postharvest decay of onion using these microorganisms either at the time of transplanting or at harvesting may be promising.

  • PDF

Meta-analysis Reveals That the Genus Pseudomonas Can Be a Better Choice of Biological Control Agent against Bacterial Wilt Disease Caused by Ralstonia solanacearum

  • Chandrasekaran, Murugesan;Subramanian, Dharaneedharan;Yoon, Ee;Kwon, Taehoon;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.32 no.3
    • /
    • pp.216-227
    • /
    • 2016
  • Biological control agents (BCAs) from different microbial taxa are increasingly used to control bacterial wilt caused by Ralstonia solanacearum. However, a quantitative research synthesis has not been conducted on the role of BCAs in disease suppression. Therefore, the present study aimed to meta-analyze the impacts of BCAs on both Ralstonia wilt disease suppression and plant (host) growth promotion. The analysis showed that the extent of disease suppression by BCAs varied widely among studies, with effect size (log response ratio) ranging from -2.84 to 2.13. The disease incidence and severity were significantly decreased on average by 53.7% and 49.3%, respectively. BCAs inoculation also significantly increased fresh and dry weight by 34.4% and 36.1%, respectively on average. Also, BCAs inoculation significantly increased plant yield by 66%. Mean effect sizes for genus Pseudomonas sp. as BCAs were higher than for genus Bacillus spp. Among antagonists tested, P. fluorescens, P. putida, B. cereus, B. subtilis and B. amyloliquefaciens were found to be more effective in general for disease reduction. Across studies, highest disease control was found for P. fluorescens, annual plants, co-inoculation with more than one BCA, soil drench and greenhouse condition were found to be essential in understanding plant responses to R. solanacearum. Our results suggest that more efforts should be devoted to harnessing the potential beneficial effects of these antagonists, not just for plant growth promoting traits but also in mode of applications, BCAs formulations and their field studies should be considered in the future for R. solanacearum wilt disease suppression.

Antibacterial Activities of Ginkgo Biloba Leaves Extracts Against Isolated Bacteria from Museums (박물관에서 분리된 세균에 대한 은행잎 추출물의 항균활성)

  • Kwon, Young-Suk;Cho, Hyun-Hok;Jeong, Seong-Yun;Lee, Sang-Youb;Kim, Min-Ju;Cho, Sun-Ja;Lee, Sang-Joon
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.983-988
    • /
    • 2006
  • The textile remains have been affected largely by environmental factors including microorganisms because they were composed of organic compounds to be easy to damage. So, we selected 8 strains of the 131 isolated strains from museum environments and textile remains by high pretense activity, and identified them for measuring the antibacterial activity of Gingko biloba extracts. They were identified Genus Arthrobacter spp. 3 strains (Arthrobacter nicotiannae A12, Arthrobacter sp B12, Arthrobacter oxidans B13), Cenus Bacillus spp. 2 strains (Bacillus licheniformis D9, Bacillus cereus D33), Genus Pseudomonas spp. 2 strains (Pseudomonas putida A24, Pseufomonas fluorescene C21) and a Genus Staphylococcus sp. 1 strain (Staphylococcus pasteuri D3) as closest strains through the blast search of NCBI. Though antibacterial activity of the extracts of Gingko biloba leaves as MIC was lower than that of other pharmaceutical antibiotics. However the extracts was crude extracts, the extracts might have good antibacterial against most of the isolates from museum. Especially, the antifungal activity of Gingko biloba is known previously, the extracts of Gingko biloba leaves has possibility of usage as a good natural material for conservation of remains.

Evaluation of Glucose Dehydrogenase and Pyrroloquinoline Quinine (pqq) Mutagenesis that Renders Functional Inadequacies in Host Plants

  • Naveed, Muhammad;Sohail, Younas;Khalid, Nauman;Ahmed, Iftikhar;Mumtaz, Abdul Samad
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.8
    • /
    • pp.1349-1360
    • /
    • 2015
  • The rhizospheric zone abutting plant roots usually clutches a wealth of microbes. In the recent past, enormous genetic resources have been excavated with potential applications in host plant interaction and ancillary aspects. Two Pseudomonas strains were isolated and identified through 16S rRNA and rpoD sequence analyses as P. fluorescens QAU67 and P. putida QAU90. Initial biochemical characterization and their root-colonizing traits indicated their potential role in plant growth promotion. Such aerobic systems, involved in gluconic acid production and phosphate solubilization, essentially require the pyrroloquinoline quinine (PQQ)-dependent glucose dehydrogenase (GDH) in the genome. The PCR screening and amplification of GDH and PQQ and subsequent induction of mutagenesis characterized their possible role as antioxidants as well as in growth promotion, as probed in vitro in lettuce and in vivo in rice, bean, and tomato plants. The results showed significant differences (p ≤ 0.05) in parameters of plant height, fresh weight, and dry weight, etc., deciphering a clear and in fact complementary role of GDH and PQQ in plant growth promotion. Our study not only provides direct evidence of the in vivo role of GDH and PQQ in host plants but also reveals their functional inadequacy in the event of mutation at either of these loci.

Effectiveness of Rhizobacteria Containing ACC Deaminase for Growth Promotion of Peas (Pisum sativum) Under Drought Conditions

  • Zahir, Z.A.;Munir, A.;Asghar, H.N.;Shaharoona, B.;Arshad, M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.958-963
    • /
    • 2008
  • A series of experiments were conducted to assess the effectiveness of rhizobacteria containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase for growth promotion of peas under drought conditions. Ten rhizobacteria isolated from the rhizosphere of different crops (peas, wheat, and maize) were screened for their growth promoting ability in peas under axenic condition. Three rhizobacterial isolates, Pseudomonas fluorescens biotype G (ACC-5), P. fluorescens (ACC-14), and P. putida biotype A (Q-7), were selected for pot trial on the basis of their source, ACC deaminase activity, root colonization, and growth promoting activity under axenic conditions. Inoculated and uninoculated (control) seeds of pea cultivar 2000 were sown in pots (4 seeds/pot) at different soil moisture levels (25, 50, 75, and 100% of field capacity). Results revealed that decreasing the soil moisture levels from 100 to 25% of field capacity significantly decreased the growth of peas. However, inoculation of peas with rhizobacteria containing ACC deaminase significantly decreased the "drought stress imposed effects" on growth of peas, although with variable efficacy at different moisture levels. At the lowest soil moisture level (25% field capacity), rhizobacterial isolate Pseudomonas fluorescens biotype G (ACC-5) was found to be more promising compared with the other isolates, as it caused maximum increases in fresh weight, dry weight, root length, shoot length, number of leaves per plant, and water use efficiency on fresh and dry weight basis (45, 150, 92, 45, 140, 46, and 147%, respectively) compared with respective uninoculated controls. It is highly likely that rhizobacteria containing ACC deaminase might have decreased the drought-stress induced ethylene in inoculated plants, which resulted in better growth of plants even at low moisture levels. Therefore, inoculation with rhizobacteria containing ACC deaminase could be helpful in eliminating the inhibitory effects of drought stress on the growth of peas.

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Rapid Detection of Ammonia-oxidizing Bacteria in Activated Sludge Based on 16S-rRNA Gene by Using PCR and Fluorometry

  • Hikuma, Motohiko;Nakajima, Masanori;Hirai, Toshiaki;Matsuoka, Hiroshi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.323-326
    • /
    • 2002
  • To detect whole ammonia-oxidizing bacteria in the activated sludge, group-specific primers targeting the 16S-rRNA gene of ammonia-oxidizing bacteria were used. The electrophoresis pattern of the PCR products seemed to produce a single band of approximately 1.0 k bp for the bacteria in activated sludge and Nitrosomonas europaea. No band was observed for nitrite-oxidizer Nitrobacter winogradskyi and heterotrophs such as Pseudomonas putida. Then direct measurement of the PCR product was made by fluorometry using the reagent Hoechist 33258, so that the fluorescent intensity was in proportional to the cell number of the sample up to 240. Total time required for the test was about 4 h including DNA extraction. The DNA fragments produced were cloned and their sequences showed high similarity to those of Nitrosomonas spp. This study showed the feasibility to detect ammonia-oxidizing bacteria and to esti-mate their population rapidly for the control of the nitrogen elimination process.

Rhizobacteria-mediated Induced Systemic Resistance in Cucumber Plants against Anthracnose Disease Caused by Colletotrichum orbiculare

  • Jeun, Yong-Chull;Lee, Yun-Jeong;Bae, Yeoung-Seuk
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.172-176
    • /
    • 2004
  • Bacterial isolates TRL2-3 and TRK2-2 showing anti-fungal activity in vitro test against some plant pathogens were identified as Pseudomonas putida and Micrococcus luteus, respectively. Pre-treatment with both bacterial isolates at the concentration 1.0$\times$ $10^7$ and $10^6$cfu/ml in the rhizosphere could trigger induced systemic resistance in the aerial part of cucumber plants against anthracnose caused by Colletotrichum orbiculare. However, the pre-treatment with the higher concentration at 1.0 $\times$ $10^8$ cfu/ml of both isolates could not induce resistance after challenge inoculation with C. orbiculare. As a positive control, the treatment with DL-3 amino butyric acid caused a remarkable reduction of disease severity whereas the lesions on the leaves of untreated plants developed apparently after the fungal inoculation. From these results, it was recomended that disease control using both bacterial isolates inducing systemic resistance in the field where chemical application is forbid.