• 제목/요약/키워드: pseudo-static tests

검색결과 38건 처리시간 0.02초

강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가 (Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity)

  • 조창빈;서진환;장승필
    • 한국지진공학회논문집
    • /
    • 제6권2호
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

The role of wall configuration and reinforcement type in selecting the pseudo-static coefficients for reinforced soil walls

  • Majid Yazdandoust;Amirhossein Rasouli Jamnani;Mohsen Sabermahani
    • Geomechanics and Engineering
    • /
    • 제35권5호
    • /
    • pp.555-570
    • /
    • 2023
  • In the current study, a series of experimental and analytical evaluations were performed to introduce the horizontal pseudo static coefficient (kh) as a function of the wall configuration and the reinforcement type for analyzing reinforced soil walls. For this purpose, eight shaking table tests were performed on reduced-scale models of integrated and two-tiered walls reinforced by metal strip and geogrid to determine the distribution of dynamic lateral pressure in the walls. Then, the physical models were analyzed using Mononobe-Okabe method to estimate the value of kh required to establish the dynamic lateral pressures similar to those observed in shaking table tests. Based on the results, the horizontal pseudo static coefficient and the position of resultant lateral force (R) were introduced as a function of the horizontal peak ground acceleration (HPGA), the wall configuration, the reinforcement type as well as maximum wall displacement.

1g 진동대 실험 및 등가정적해석을 이용한 억지말뚝의 사면안정 내진보강 효과 연구 (A Study on Seismic Retrofit Design of the Stabilized Piles by 1g Shaking Table Tests and Pseudo-static Analysis)

  • 한진태;조종석;유민택;이승현
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.93-101
    • /
    • 2011
  • 국토의 70% 이상이 산지인 국내 지형 조건에서 도로, 철도 등 크고 작은 건설 공사에서는 필연적으로 사면이 형성된다. 그러나, 최근 국내외적으로 빈번히 발생하는 지진에 대한 사면안정 보강공법에 대한 연구는 전무한 실정이다. 이에 본 연구에서는 1 g 진동대 실험 및 등가정적해석을 이용하여 사면의 내진 보강공법으로써 억지말뚝의 적용성을 평가하고, 억지말뚝이 적용된 사면 및 억지말뚝의 지진시 거동을 분석하였다. 1 g 진동대 실험 결과로부터, 억지말뚝 보강 사면의 지진시 사면파괴 억지효과를 검증하였으며, 등가정적해석을 통해 억지 말뚝을 사면 하부 또는 상부보다 사면 파괴면의 중앙부에 말뚝을 설치했을 때 사면파괴 억지효과가 가장 큼을 알 수 있었다. 또한, 말뚝이 사면 중앙부에 설치되었을 경우, 말뚝의 중심 간격에 따른 안전율 변화를 등가정적해석으로부터 분석하였다.

Post-earthquake capacity evaluation of R/C buildings based on pseudo-dynamic tests

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.91-105
    • /
    • 2006
  • In this paper, post-earthquake capacity evaluation method of reinforced concrete buildings was studied. Substructure pseudo-dynamic test and static loading test of first story column in a four-story R/C building was carried out in order to investigate the validity of the evaluation method proposed in the Damage Assessment Guideline (JBDPA 2001). In pseudo-dynamic test, different levels of damage were induced in the specimens by pre-loading, and input levels of seismic motion, at which the specimens reached to the ultimate stage, were examined. From the experimental result, no significant difference in damage levels such as residual crack width between the specimens under static and pseudo-dynamic loading was found. It is shown that the seismic capacity reduction factors ${\eta}$ can provide a reasonable estimation of post-earthquake seismic capacity of R/C buildings suffered earthquakes.

Quasi-static cyclic displacement pattern for seismic evaluation of reinforced concrete columns

  • Yuksel, E.;Surmeli, M.
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.267-283
    • /
    • 2011
  • Although earthquakes generate random cyclic lateral loading on structures, a quasi-static cyclic loading pattern with gradually increasing amplitude has been commonly used in the laboratory tests because of its relatively low cost and simplicity compared with pseudo-dynamic and shake table tests. The number, amplitudes and sequence of cycles must be chosen appropriately as important parameters of a quasi-static cyclic loading pattern in order to account for cumulative damage matter. This paper aims to reach a new cyclic displacement pattern to be used in quasi-static tests of well-confined, flexure-dominated reinforced concrete (RC) columns. The main parameters of the study are sectional dimensions, percentage of longitudinal reinforcement, axial force intensity and earthquake types, namely, far-fault and near-fault.

Snap back testing of unbonded post-tensioned concrete wall systems

  • Twigden, Kimberley M.;Henry, Richard S.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.209-219
    • /
    • 2019
  • Unbonded Post-Tensioned (UPT) precast concrete systems have been shown to provide excellent seismic resistance. In order to improve understanding of the dynamic response of UPT systems, a series of snap back tests on four UPT systems was undertaken consisting of one Single Rocking Wall (SRW) and three Precast Wall with End Columns (PreWEC) systems. The snap back tests provided both a static pushover and a nonlinear free vibration response of a system. As expected the SRW exhibited an approximate bi-linear inertia force-drift response during the free vibration decay and the PreWEC walls showed an inertia force-drift response with increased strength and energy dissipation due to the addition of steel O-connectors. All walls exhibited negligible residual drifts regardless of the number of O-connectors or the post-tensioning force. When PreWEC systems of the same strength were compared the inclusion of further energy dissipating O-connectors was found to decrease the measured peak wall acceleration. Both the local and global wall parameters measured at pseudo-static and dynamic loading rates showed similar behaviour, which demonstrates that the dynamic behaviour of UPT walls is well represented by pseudo-static tests. The SRW was found to have Equivalent Viscous Damping (EVD) between 0.9-3.8% and the three PreWEC walls were found to have maximum EVD of between 14.7-25.8%.

터널 갱구 2 Arch 굴착에 따른 안정성 해석 (Stability Analysis for Two Arch Excavation of a Tunnel Portal)

  • 이길재;유광호;박연준;채영수
    • 터널과지하공간
    • /
    • 제12권3호
    • /
    • pp.179-188
    • /
    • 2002
  • 본 연구는 한 경부 고속철도 터널의 NATM 굴착에 의한 2 arch 확공 굴착 시 발생되는 진동 및 응력의 변화가 터널 및 인근 사면에 미치는 영향을 사전에 파악하여 안정성을 검토하는 데에 그 목적이 있다. 지반물성치를 산정하기 위해 시추공 조사, TV검층 및 속도검층을 실시하였다. 2차원 해석을 통해 불확실한 지반의 물성을 변수로 간주하고 가능한 범위 내에서 해석을 수행함으로서 특정한 지반 물성이 입력 정수로서 결정되었다. 정적 및 발파 진동에 의한 준-정적(pseudo-static)안전율을 계산하였으며, 3차원 해석을 통해 터널굴착으로 인한 터널 및 터널 주변의 거동과 터널 지보재의 적정성 여부를 조사하였다.

Development and experimental study on cable-sliding modular expansion joints

  • Gao, Kang;Yuan, Wan C.;Dang, Xin Z.
    • Structural Engineering and Mechanics
    • /
    • 제61권6호
    • /
    • pp.795-806
    • /
    • 2017
  • According to the characteristics of continuous beam bridges, the relative displacement is too large to collision or even girder falling under earthquakes. A device named Cable-sliding Modular Expansion Joints(CMEJs) that can control the relative displacement and avoid collision under different ground motions is proposed. Working principle and mechanical model is described. This paper design the CMEJs, establish the restoring force model, verify the force model of this device by the pseudo-static tests, and describe and analyze results of the tests, and then based on a triple continuous beam bridge that has different heights of piers, a 3D model with or without CMEJs were established under Conventional System (CS) and Seismic Isolation System (SIS). The results show that this device can control the relative displacement and avoid collisions. The combination of isolation technology and CMEJs can be more effective to achieve both functions, but it need to take measures to prevent girder falling due to the displacement between pier and beam under large earthquakes.

입력 지진의 주파수 특성을 고려한 중력식 안벽의 수평 지진계수에 대한 고찰 (A Discussion on the Seismic Coefficient for Gravity Quay Wall Considering Frequency Characteristics of Input Earthquake)

  • 이문교;하정곤;박헌준;김동수
    • 한국지진공학회논문집
    • /
    • 제22권1호
    • /
    • pp.15-22
    • /
    • 2018
  • Pseudo-static approach has been conventionally applied for the design of gravity type quay walls. In this method, seismic coefficient ($k_h$), expressed in terms of acceleration due to gravity, is used to convert the real dynamic behavior to an equivalent pseudo-static inertial force for seismic analysis and design. Therefore, the calculation of an appropriate $k_h$ considering frequency characteristics of input earthquake is critical for representing the real dynamic behavior. However, the definitions of $k_h$, which is used for simplified analysis in Korea, focuses only on convenience that is easy to use, and the frequency characteristics of input earthquake are not reflected in the $k_h$ definitions. This paper evaluates the influences of the frequency characteristics of input earthquake on $k_h$ by initially reviewing the $k_h$ definitions in the existing codes of Japan for port structures and then by performing a series of dynamic centrifuge tests on caisson gravity quay walls of different earthquake input motions (Ofunato, Hachinohe). A review of the existing codes and guidelines has shown that the $k_h$ values are differently estimated according to the frequency characteristics of input earthquake. On the other hand, based on the centrifuge tests, it was found that the permanent displacements of wall are more induced when long-period-dominant earthquake is applied.

Glass Dissolution Rates From MCC-1 and Flow-Through Tests

  • Jeong, Seung-Young
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.257-258
    • /
    • 2004
  • The dose from radionuclides released from high-level radioactive waste (HLW) glasses as they corrode must be taken into account when assessing the performance of a disposal system. In the performance assessment (PA) calculations conducted for the proposed Yucca Mountain, Nevada, disposal system, the release of radionuclides is conservatively assumed to occur at the same rate the glass matrix dissolves. A simple model was developed to calculate the glass dissolution rate of HLW glasses in these PA calculations [1]. For the PA calculations that were conducted for Site Recommendation, it was necessary to identify ranges of parameter values that bounded the dissolution rates of the wide range of HLW glass compositions that will be disposed. The values and ranges of the model parameters for the pH and temperature dependencies were extracted from the results of SPFT, static leach tests, and Soxhlet tests available in the literature. Static leach tests were conducted with a range of glass compositions to measure values for the glass composition parameter. The glass dissolution rate depends on temperature, pH, and the compositions of the glass and solution, The dissolution rate is calculated using Eq. 1: $rate{\;}={\;}k_{o}10^{(ph){\eta})}{\cdot}e^{(-Ea/RT)}{\cdot}(1-Q/K){\;}+{\;}k_{long}$ where $k_{0},\;{\eta}$ and Eaare the parameters for glass composition, pH, $\eta$ and temperature dependence, respectively, and R is the gas constant. The term (1-Q/K) is the affinity term, where Q is the ion activity product of the solution and K is the pseudo-equilibrium constant for the glass. Values of the parameters $k_{0},\;{\eta}\;and\;E_{a}$ are the parameters for glass composition, pH, and temperature dependence, respectively, and R is the gas constant. The term (1-Q/C) is the affinity term, where Q is the ion activity product of the solution and K is the pseudo-equilibrium constant for the glass. Values of the parameters $k_0$, and Ea are determined under test conditions where the value of Q is maintained near zero, so that the value of the affinity term remains near 1. The dissolution rate under conditions in which the value of the affinity term is near 1 is referred to as the forward rate. This is the highest dissolution rate that can occur at a particular pH and temperature. The value of the parameter K is determined from experiments in which the value of the ion activity product approaches the value of K. This results in a decrease in the value of the affinity term and the dissolution rate. The highly dilute solutions required to measure the forward rate and extract values for $k_0$, $\eta$, and Ea can be maintained by conducting dynamic tests in which the test solution is removed from the reaction cell and replaced with fresh solution. In the single-pass flow-through (PFT) test method, this is done by continuously pumping the test solution through the reaction cell. Alternatively, static tests can be conducted with sufficient solution volume that the solution concentrations of dissolved glass components do not increase significantly during the test. Both the SPFT and static tests can ve conducted for a wide range of pH values and temperatures. Both static and SPFt tests have short-comings. the SPFT test requires analysis of several solutions (typically 6-10) at each of several flow rates to determine the glass dissolution rate at each pH and temperature. As will be shown, the rate measured in an SPFt test depends on the solution flow rate. The solutions in static tests will eventually become concentrated enough to affect the dissolution rate. In both the SPFt and static test methods. a compromise is required between the need to minimize the effects of dissolved components on the dissolution rate and the need to attain solution concentrations that are high enough to analyze. In the paper, we compare the results of static leach tests and SPFT tests conducted with simple 5-component glass to confirm the equivalence of SPFT tests and static tests conducted with pH buffer solutions. Tests were conducted over the range pH values that are most relevant for waste glass disssolution in a disposal system. The glass and temperature used in the tests were selected to allow direct comparison with SPFT tests conducted previously. The ability to measure parameter values with more than one test method and an understanding of how the rate measured in each test is affected by various test parameters provides added confidence to the measured values. The dissolution rate of a simple 5-component glass was measured at pH values of 6.2, 8.3, and 9.6 and $70^{\circ}C$ using static tests and single-pass flow-through (SPFT) tests. Similar rates were measured with the two methods. However, the measured rates are about 10X higher than the rates measured previously for a glass having the same composition using an SPFT test method. Differences are attributed to effects of the solution flow rate on the glass dissolution reate and how the specific surface area of crushed glass is estimated. This comparison indicates the need to standardize the SPFT test procedure.

  • PDF