• 제목/요약/키워드: pseudo-static

검색결과 170건 처리시간 0.026초

Experimental hysteretic behavior of in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls

  • Li, Sheng-Cai;Dong, Jian-Xi;Li, Li-Feng
    • Structural Engineering and Mechanics
    • /
    • 제41권1호
    • /
    • pp.95-112
    • /
    • 2012
  • In order to analyze the experimental hysteretic behavior of the in-plane loaded reinforced grouted multi-ribbed aerated concrete blocks masonry walls (RGMACBMW), we have carried out the pseudo static testing on the six specimens of RGMACBMW. Based on the test results and shear failure characteristics, the shear force hysteretic curves and displacement envelope curves of the models were obtained and discussed. On the basis of the hysteretic curves a general skeleton curve of the shear force and displacement was formed. The restoring model was adopted to analyze the seismic behavior and earthquake response of RGMACBMW. The deformation capacity of the specimens was discussed, and the formulas for calculating the lateral stiffness of the walls at different loading stages were proposed as well. The average lateral displacement ductility factor of RGMACBMW calculated based on the test results was 3.16. This value illustrates that if the walls are appropriately designed, it can fully meet the seismic requirement of the structures. The quadri-linear restoring models of the walls degradation by the test results accurately reflect the hysteretic behaviors and skeleton curves of the masonry walls. The restoring model can be applied to the RGMACBMW structure in earthquake response analysis.

Influence of neck width on the performance of ADAS device with diamond-shaped hole plates

  • Wu, Yingxiong;Lu, Jianfeng;Chen, Yun
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.19-32
    • /
    • 2020
  • Metallic energy-dissipation dampers are widely used in structures. They are comprised of an added damping and stiffness (ADAS) device with many parallel, diamond-shaped hole plates, the neck width of which is an important parameter. However, no studies have analyzed the neck width's influence on the ADAS device's performance. This study aims to better understand that influence by conducting a pseudo-static test on ADAS, with three different neck widths, and performing finite element analysis (FEA) models. Based on the FEA results and mechanical theory, a design neck width range was proposed. The results showed that when the neck width was within the specified range, the diamond-shaped hole plate achieved an ideal yield state with minimal stress concentration, where the ADAS had an optimal energy dissipation performance and the brittle shear fracture on the neck was avoided. The theoretical values of the ADAS yield loads were in good agreement with the test values. While the theoretical value of the elastic stiffness was lower than the test value, the discrepancy could be reduced with the proposed modified coefficient.

댐의 내진설계시 해석방법과 그 적용성 평가 (Evaluation of the Application and Analysis Method at Seismic Design of Dam)

  • 황성춘
    • 한국산학기술학회논문지
    • /
    • 제12권9호
    • /
    • pp.4239-4249
    • /
    • 2011
  • 일본과 같은 지진 빈발국은 CFRD의 경우 지진시 댐제체 상류부의 Face Slab에 응력이 집중하여 파괴되는 경우를 대부분 상정하여 내진안정성을 평가한다. 그러나 우리나라에서는 현재까지 이에 대한 명확한 해석방법이 확립되어 있지 않다. 본 논문은 CFRD에 대하여 등가정적해석 및 동적해석 수행 후 진동대시험과 비교하여 그 신뢰성을 평가하였다. 등가정적해석은 진도법, 수정진도법, Newmark법을 적용하였고 동적해석은 주파수응답해석, 시간이력 해석법을 적용하였다. 해석결과 해석 방법별 편차는 발생하나 가속도 및 변위의 발생경향은 진동대시험 결과와 잘 일치하였다.

Seismic response of vertical shafts in multi-layered soil using dynamic and pseudo-static analyses

  • Kim, Yongmin;Lim, Hyunsung;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • 제21권3호
    • /
    • pp.269-277
    • /
    • 2020
  • In this study, numerical analyses were conducted to investigate the load transfer mechanisms and dynamic responses between the vertical shaft and the surrounding soil using a dynamic analysis method and a pseudo-static method (called response displacement method, RDM). Numerical solutions were verified against data from the literature. A series of parametric studies was performed with three different transient motions and various surrounding soils. The results showed that the soil stratigraphy and excitation motions significantly influenced the dynamic behavior of the vertical shaft. Maximum values of the shear force and bending moment occurred near an interface between the soil layers. In addition, deformations and load distributions of the vertical shaft were highly influenced by the amplified seismic waves on the vertical shaft constructed in multi-layered soils. Throughout the comparison results between the dynamic analysis method and the RDM, the results from the dynamic analyses showed good agreement with those from the RDM calculated by a double-cosine method.

Analysis of Mechanical Properties in Steel Frame with Ductile Connections

  • Han, Minglan;Wang, Shuai;Wang, Yan
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1464-1469
    • /
    • 2018
  • Steel frames with ductile connections have good seismic performance under strong earthquake, they are now popular for high seismic design. In order to simplify the process of numerical analysis of the steel frames with ductile connections, simplified connection models are introduced, two types of springs are placed in the simplified connection model, which can simulate deformation of the panel zone and members. 6-story-3-bay steel frames with ductile connections are simplified and carried out modal analysis, fundamental periods of the frames predicted by finite-element analysis for simplified steel frame models were compared to the results for actual frame models. 2-story steel frame with reduced beam section connections is simplified and carried out pseudo-static analysis, hysteretic curves and skeleton curves of the frame obtained by finite-element analysis for simplified steel frame model are compared to test results. The comparison show that the difference between them is small, it is reliable and effective to predict mechanical properties of the steel frame with ductile connection by finite-element analysis of simplified steel frame model.

터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측 (Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis)

  • 박두희;신종호;윤세웅
    • 한국지반공학회논문집
    • /
    • 제26권6호
    • /
    • pp.71-85
    • /
    • 2010
  • 터널의 동적 지진해석은 실무에서 널리 수행되고 있다. 동적해석은 하부 및 측면 경계 조건, Deconvolution, 구성모형, 동적 물성치 등을 적용 또는 결정하기 어려워서 해석 수행 시 주의해야 하지만 이에 대한 명확한 가이드라인이 제시된 바 없다. 또한 많은 경우에는 터널의 동적해석 자체가 필요없지만 이에 대한 필요성과 정적해석과의 차이에 대한 이해 없이 무분별하게 사용되고 있는 실정이다. 본 논문에서는 일차적으로 2차원 동적 해석을 올바르게 수행하기 위한 가이드라인을 제시하였다. 이차적으로는 제시된 가이드라인을 준수한 2차원 동적해석을 수행하였으며 해석결과를 응답변위법을 비교하였다. 응답변위법과 동적해석을 비교한 결과, 두 해석기법간의 차이는 크지 않은 것으로 나타났다. 즉, 터널 갱구부, 초연약지반, 또는 공간적 변이성을 고려해야 하는 경우를 제외하고는 터널의 횡방향 지진해석은 응답변위법으로도 충분히 정확하게 터널의 응답을 예측할 수 있을 것으로 판단된다.

콘크리트표면차수벽령 석괴댐의 지진응답해석 (Seismic Response Analysis of the Concrete Face Rockfill Dam)

  • 오병현;임정열;이종옥
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.147-154
    • /
    • 2001
  • In this study, comprehensive seismic performance analysis were performed for the concrete face rockfill dam(CFRD) designed seismic coefficient method(0. 10g). The static and pseudo-static FEM analysis, limited equilibrium method and dynamic FEM analysis were used for the dam safety analysis. The results of the seismic analysis were that the minimum factor of safety of down slope was 1.2 and horizontal displacement increased 8cm and vertical displacement increased 1.2cm at dam crest rather than those of static condition. The model dam did not show any serious tai lure in seismic stabi1ity for 0.13g. And much more research is still necessary in seismic safety of CFRD.

  • PDF

Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building

  • Bento, R.;Bhatt, C.;Pinho, R.
    • Earthquakes and Structures
    • /
    • 제1권2호
    • /
    • pp.177-195
    • /
    • 2010
  • This paper presents an appraisal of four nonlinear static procedures (CSM, N2, MPA and ACSM) employed in seismic assessment of plan-irregular buildings. It uses a three storey reinforced concrete plan-irregular frame building exemplifying typical older constructions of the Mediterranean region in the early 1970s that was tested in full-scale under bi-directional pseudo-dynamic loading condition at JRC, Ispra. The adequacy and efficiency of the simplified analytical modelling assumptions adopted were verified. In addition, the appropriate variants of code-prescribed NSPs (CSM and N2) to be considered for subsequent evaluation were established. Subsequent parametric studies revealed that all such NSPs predicted reasonably well both global and local responses, having the benchmark values been determined through nonlinear dynamic analyses using a suit of seven ground motions applied with four different orientations. The ACSM, however, predicted responses that matched slightly better the median dynamic results.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • 제34권2호
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

축소 의사역행렬과 영역분할 기반 축소모델 구축 기법 연구 (Reduction Method based on Sub-domain Structure using Reduced Pseudo Inverse Method)

  • 김현기;조맹효
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2009년도 정기 학술대회
    • /
    • pp.139-145
    • /
    • 2009
  • 축소시스템은 반복적인 계산이 요구되는 문제에서 매우 유용하게 적용될 수 있는 해석 기법이다. 최근에는 영역분할 기법과의 연동을 통해 축소시스템의 효율성이 향상되었다. 그러나, 전체 도메인이 몇 개의 영역으로 분할될 때 구속조건이 부과되지않는 영역이 만들어지게 된다. 각 부영역의 축소시스템을 구축하기 위해서는 리츠벡터를 추출해야 하는데, 구속조건이 부과된 부영역에서는 일반적인 정적해석을 통해 가능하다. 그러나, 경계조건이 부과되지 않은 부영역에서는 리츠벡터 추출을 위해 의사역행렬을 이용해야 한다. 일반적으로, 의사역행렬의 사용은 상당한 계산시간과 전산자원을 필요로 하는 문제점이 있다. 본 연구에서는 이 문제점을 개선하기 위해 축소 의사역행렬 도입을 제안한다. 이 방법은 정적 축소방법을 기초로 축소 의사역행렬을 구축하여 축소된 리츠벡터 정보를 추출한 후, 변환관계를 이용하여 전체 리츠벡터 정보를 구하게 된다. 수치예제에서는 고유치 해석을 통해 제안방법의 신뢰성을 검증하고, 전체시스템 계산시간과 비교하여 그 효율성을 검증한다.

  • PDF