• Title/Summary/Keyword: pseudo second order

Search Result 431, Processing Time 0.021 seconds

Removal Characteristics of Cu(II) ion in Aqueous Solution by Solid-Phase Extractant Immobilized D2EHPA and TBP in PVC (D2EHPA와 TBP를 PVC에 고정화한 고체상 추출제를 사용한 수용액 중의 Cu(II) 이온 제거특성)

  • Kam, Sang-Kyu;Lee, Song-Woo;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.47-53
    • /
    • 2015
  • Removal characteristics of Cu(II) ions by solid-phase extractant immobilized D2EHPA and TBP in PVC were investigated. Cu(II) ion concentrations in the solution and removal capacity of Cu(II) ion according to operation time were compared. The lower the initial concentration of Cu(II) ion in aqueous solution was, the removal capacity of Cu(II) ion by solid-phase extractant was increased relatively. The bigger the initial concentration of Cu(II) ion was, the removal capacity of Cu(II) ion was increased relatively. The pseudo-second-order kinetics according to operation time was showed more satisfying results than the pseudo-first-order kinetics for the removal velocity of Cu(II) ion. The removal capacity of Cu(II) ion was 0.025 mg/g in aqueous solution of pH 2, but the removal capacity of Cu(II) ion was increased to 0.33 mg/g mg/g in aqueous solution of pH 4 according to increasing pH.

Biosorption and Flotation of Lead and Chromium using Waste Activated Sludge (폐 활성슬러지를 이용한 납과 크롬의 생체흡착 및 부상)

  • Lee, Chang-Han
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.10
    • /
    • pp.444-450
    • /
    • 2009
  • We have investigated biosorption kinetics and equilibrium of $Pb^2+$ and $Cr^2+$ using waste sludge, and separation efficiency of waste sludge by dissolved air flotation was evaluated in the various A/S ratio. The biosorption capacity and contact time were shown as a simulation of biosorption equilibrium and kinetics models. Biosorption equilibrium of the $Pb^2+$ and $Cr^2+$ onto the waste sludge could be fitted by the Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan equation. The kinetics could be fitted by a pseudo-second-order rate equation more than a pseudo-first-order rate equation. The separation efficiency of waste sludge using DAF was kept above 90%.

Removal of Sr and Cs Ions in Aqueous Solution by PVC-Zeolite Composite (PVC-Zeolite 복합체에 의한 수용액 중의 Sr 이온과 Cs 이온의 제거)

  • Lee, Chang-Han;Lee, Min-Gyu;Min, Seong-Kee
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1145-1153
    • /
    • 2015
  • PVC-Zeolite composite was prepared by immobilizing zeolite with polyvinyl chloride (PVC). The prepared PVC-Zeolite beads were characterized by using X-ray diffractometer (XRD), fourier transform infrared spectrometer (FTIR), thermo gravimetric analyzer (TGA), and scanning electron microscopy (SEM). The removal properties of Sr and Cs ions from aqueous solution were investigated in batch experiment. The removal efficiencies of Sr and Cs ions by the PVC-Zeolite beads were dependent on the initial pH of solution. The removal efficiencies sharply increased at below pH 4 and was kept constant at pH 4 or more. The adsorption kinetics of Sr and Cs ions by the PVC-Zeolite beads were fitted well by the pseudo-second-order model ($r^2$>0.99) more than pseudo-first-order model. The maximum adsorption capacities of Sr and Cs ions calculated from Langmuir isotherm model were 39.37 mg/g and 55.87 mg/g, respectively.

Adsorption Kinetics of Cupper and Zinc Ion with Na-A Zeolite Synthesized by Coal Fly Ash (석탄 비산재로 합성한 Na-A형 제올라이트에 의한 구리와 아연 이온의 동역학적 흡착 특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.20 no.12
    • /
    • pp.1607-1615
    • /
    • 2011
  • The adsorption performance of cupper and zinc ions($Cu^{2+}$ and $Zn^{2+}$) in aqueous solution was investigated by an adsorption process on reagent grade Na-A zeolite(Z-WK) and Na-A zeolite (Z-C1) prepared from coal fly ash. Z-C1 was synthesized by a fusion method with coal fly ash from a thermal power plant. Batch adsorption experiment with Z-C1 was employed to study the kinetics and equilibrium parameters such as initial metal ions concentration and adsorption time of the solution on the adsorption process. Adsorption rate of metal ions occurred rapidly and adsorption equilibrium reached at less than 120 minutes. The kinetics data of $Cu^{2+}$ and $Zn^{2+}$ ions were well fitted by a pseudo-second-order kinetics model more than a pseudo-first-order kinetics model. The equilibrium data were well fitted by a Langmuir model and this result showed $Cu^{2+}$ and $Zn^{2+}$ adsorption on Z-C1 would be occupied by a monolayer adsorption. The maximum adsorption capacity($q_{max}$) by the Langmuir model was determined as $Cu^{2+}$ 99.8 mg/g and $Zn^{2+}$ 108.3 mg/g, respectively. It appeared that the synthetic zeolite, Z-C1, has potential application as absorbents in metal ion recovery and mining wastewater.

Characteristics of Phosphate Adsorption using Prepared Magnetic Iron Oxide (MIO) by Co-precipitation Method in Water (공침법에 의해 제조된 Magnetic Iron Oxide (MIO)를 이용한 수중 인 흡착 특성)

  • Lee, Won-Hee;Chung, Jinwook;Kim, Jong-Oh
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.6
    • /
    • pp.609-615
    • /
    • 2015
  • This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found $89.6m^2/g$ and 16 nm respectively. And, the determination coefficient ($R^2$) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.

Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers

  • Masood, Zehraa B.;Ali, Ziad Tark Abd
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.605-613
    • /
    • 2020
  • This study is to investigate the possibility of using activated carbon prepared from Iraqi date-pits (ADP) which are produced from palm trees (Phoenix dactylifera L.) as low-cost reactive material in the permeable reactive barrier (PRB) for treating lead (Pb+2) from the contaminated groundwater, and then compare the results experimentally with other common reactive materials such as commercial activated carbon (CAC), zeolite pellets (ZP). Factors influencing sorption such as contact time, initial pH of the solution, sorbent dosage, agitation speed, and initial lead concentration has been studied. Two isotherm models were used for the description of sorption data (Langmuir and Freundlich). The maximum lead sorption capacities were measured for ADP, CAC, and ZP and were found to be 24.5, 12.125, and 4.45 mg/g, respectively. The kinetic data were analyzed using various kinetic models particularly pseudo-first-order, pseudo-second-order, and intraparticle diffusion. COMSOL Multiphysics 3.5a depend on finite element procedure was applied to formulate transmit of lead (Pb+2) in the two-dimensional numerical (2D) model under an equilibrium condition. The numerical solution shows that the contaminant plume is hindered by PRB.

Removal of Cu (II) and Cd (II) Ions Onto Water Hyacinth Based Carbonaceous Materials

  • Amina, A. Attia;Shouman, Mona.A.;Khedr, S.A.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • v.7 no.4
    • /
    • pp.249-258
    • /
    • 2006
  • Treatment of water hyacinth with sulphuric acid produces carbonaceous materials that have been used to remove Cu(II) and Cd (II) ions from aqueous solutions. Untreated water hyacinth was also used for the subject of comparison. The textural properties of the carbonaceous materials were determined from nitrogen adsorption at 77 K. The optimum pH for the sorption of Cu (II) and Cd (II) ions on the investigated sorbents was determined. Dynamic adsorption measurements have been taken at 298 K whereas equilibrium measurements were carried out at 298, 313 and 323 K. The adsorption of nitrogen at 77 K on the untreated sample was too low and the surface areas of the treated samples 2, 3 and 4 were found between $70-208\;m^2/g$. The total pore volumes of these samples which were determined for the carbonaceous materials investigated were found to be 0.076-0.140 ml/g. The kinetic adsorption data of Cu (II) and Cd(II) were applicable to both pseudo - first and pseudo-second order but fit more the latter order. The equilibrium adsorption data were found to fit Freundlich and Langmiur equations. The values of DG, DH and DS are all negative indicating the feasibility and the spontaneous nature of the sorption of Cu (II) and Cd (II) ions by the sorbents investigated.

  • PDF

Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties

  • Haque, Enamul;Khan, Nazmul Abedin;Talapaneni, Siddulu Naidu;Vinu, Ajayan;JeGal, Jong-Geon;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1638-1642
    • /
    • 2010
  • Mesoporous carbon CMK-3s with different textural properties have been used for the adsorption of phenol to understand the necessary physicochemical properties of carbon for the efficient removal of phenol from contaminated water. The kinetic constants (both pseudo-second order and pseudo-first-order kinetics) increase with increasing pore size of carbons. The maximum adsorption capacities correlate well with micropore volume compared with surface area or total pore volume even though large pore (meso or macropore) may contribute partly to the adsorption. The pore occupancies also explain the importance of micropore for the phenol adsorption. For efficient removal of phenol, carbon adsorbents should have large micropore volume and wide pore size for high uptake and rapid adsorption, respectively.

Coconut husk as a biosorbent for methylene blue removal and its kinetics study

  • Dave, Shailesh R.;Dave, Vaishali A.;Tipre, Devayani R.
    • Advances in environmental research
    • /
    • v.1 no.3
    • /
    • pp.223-236
    • /
    • 2012
  • Biosorption of methylene blue (MB) from aqueous solution was studied with respect to the point of zero charge of coconut husk, dye concentration, particle size, pH, temperature, as well as adsorbent and NaCl concentration using coconut husk biomass. Amongst Langmuir and Freundlich adsorption isotherms studied, Langmuir adsorption isotherm showed better agreement. Pseudo second order kinetics model was found to be more suitable for data presentation as compared to pseudo first order kinetics model. Also, involvement of diffusion process was studied using intraparticle diffusion, external mass transfer and Boyd kinetic model. Involvement of intraparticle diffusion model was found to be more relevant (prominent) as compared to external mass transfer (in) for methylene blue biosorption by the coconut husk. Moreover, thermodynamic properties of MB biosorption by coconut husk were studied. Desorption of methylene blue from biomass was studied with different desorbing agents, and the highest desorption achieved was as low as 7.18% with acetone, which indicate stable immobilization. Under the experimental conditions MB sorption was not significantly affected by pH, temperature and adsorbent concentration but low sorption was observed at higher NaCl concentrations.

Fuculose-1-Phosphate Aldolase of Methanococcus jannaschii: Reaction of Histidine Residues Connected with Catalytic Activities

  • Lee, Bong-Hwan;Yu, Yeon-Gyu;Kim, Bok-Hwan;Choi, Jung-Do;Yoon, Moon-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.838-844
    • /
    • 2001
  • The enzyme Fuc aldolase from Methanococcus jannaschii that catalyzes the aldol condensation of DHAP and L-lactaldehyde to give fuculose-1-phosphate was inactivated by DEP. The inactivation was pseudo first-order in the enzyme and DEP, which was biphasic. A pseudo second-order rate constant of 120$M^{-1}min^{-1}$ was obtained at pH 6.0 and $25{\circ}C$. Quantifying the increase in absorbance at 240nm showed that four histidine residues per subunit were modified during the nearly complete inactivation. The statistical analysis and the time course of the modification suggested that two or three histidine residues were essential for activity. The rate of inactivation was dependent on the pH, and the pH inactivation data implied the involvement of the amino acid residue with a $pK_a$ value of 5.7. Fuc aldolase was protected against DEP inactivation by DHAP, indicating that the histidine residues were located at the active site of Fuc aldolase. DL-Glyceraldehyde, as an alternative substrate to L-lactaldehyde, showed no specific protection for the Fuc aldolase.

  • PDF