• 제목/요약/키워드: pseudo order

검색결과 1,047건 처리시간 0.034초

Innovative Remediation of Arsenic in Groundwater by Nano Scale Zero-Valent Iron

  • Kanel, Sushil-Raj;Kim, Ju-Yong;Park, Heechul
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.87-90
    • /
    • 2003
  • This research examines the feasibility of using laboratory-synthesized nano scale zero-valent iron particles to remove arsenic from aqueous phase. Batch experiments were performed to determine arsenic sorption rates as a function of the nano scale zero-valent iron solution concentration. Rapid adsorption of arsenic was achieved with the nano scale zero-valent iron. Typically 1 mg $L^{-1}$ arsenic (III) was adsorbed by 5 g $L^{-1}$ nano scale zero-valent iron below the 0.01 g $L^{-1}$ concentration within 7min. The kinetics of the arsenic sorption followed pseudo-first-order reaction kinetics. Observed reaction rate constants ( $K_{obs}$) varied between 11.4 to 129.0 $h^{-1}$ with respect to different concentrations of nano scale zero-valent iron. A variety of analytical techniques were used to study the reaction products including HGAAS (hydride generator atomic adsorption spectrophotometer), SEM (scanning electron microscopy) and TEM (transmission electron microscopy). Our experimental results suggest novel method for efficient removal of arsenic Iron groundwater.r.

  • PDF

공침법에 의해 제조된 Magnetic Iron Oxide (MIO)를 이용한 수중 인 흡착 특성 (Characteristics of Phosphate Adsorption using Prepared Magnetic Iron Oxide (MIO) by Co-precipitation Method in Water)

  • 이원희;정진욱;김종오
    • 상하수도학회지
    • /
    • 제29권6호
    • /
    • pp.609-615
    • /
    • 2015
  • This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found $89.6m^2/g$ and 16 nm respectively. And, the determination coefficient ($R^2$) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.

PM10 예보 향상을 위한 민감도 분석에 의한 역모델 파라메터 추정 (Inverse Model Parameter Estimation Based on Sensitivity Analysis for Improvement of PM10 Forecasting)

  • 유숙현;구윤서;권희용
    • 한국멀티미디어학회논문지
    • /
    • 제18권7호
    • /
    • pp.886-894
    • /
    • 2015
  • In this paper, we conduct sensitivity analysis of parameters used for inverse modeling in order to estimate the PM10 emissions from the 16 areas in East Asia accurately. Parameters used in sensitivity analysis are R, the observational error covariance matrix, and B, a priori (background) error covariance matrix. In previous studies, it was used with the predetermined parameter empirically. Such a method, however, has difficulties in estimating an accurate emissions. Therefore, an automatically determining method for the most suitable value of R and B with an error measurement criteria and posteriori emissions accuracy is required. We determined the parameters through a sensitivity analysis, and improved the accuracy of posteriori emissions estimation. Inverse modeling methods used in the emissions estimation are pseudo inverse, NNLS (Nonnegative Least Square), and BA(Bayesian Approach). Pseudo inverse has a small error, but has negative values of emissions. In order to resolve the problem, NNLS is used. It has a unrealistic emissions, too. The problems are resolved with BA(Bayesian Approach). We showed the effectiveness and the accuracy of three methods through case studies.

Isothermal and Kinetic Studies of the Adsorption Removal of Pb(II), Cu(II), and Ni(II) Ions from Aqueous Solutions using Modified Chara Sp. Algae

  • Kalash, Khairi R.;Alalwan, Hayder A.;Al-Furaiji, Mustafa H.;Alminshid, Alaa. H.;Waisi, Basma I.
    • Korean Chemical Engineering Research
    • /
    • 제58권2호
    • /
    • pp.301-306
    • /
    • 2020
  • We investigated the individual biosorption removal of lead, copper, and nickel ions from aqueous solutions using Chara sp. algae powder in a batch mode. The impact of several parameters, such as initial concentration of the metal ions, contacting time, sorbent dose, and pH on the removal efficiency, was investigated. The maximum removal efficiency at optimum conditions was found to be 98% for Pb(II) at pH = 4, 90% for Cu(II) at pH = 5, and 80% for Ni(II) at pH = 5. The isotherm study was done under the optimum conditions for each metal by applying the experimental results onto the well-known Freundlich and Langmuir models. The results show that the Langmuir is better in describing the isotherm adsorption of Pb(II) and Ni(II), while the Freundlich is a better fit in the case of Cu(II). Similarly, a kinetic study was performed by using the pseudo-first and second-order equations. Our results show that the pseudo-second-order is better in representing the kinetic adsorption of the three metal ions.

Numerical modeling of two-dimensional simulation of groundwater protection from lead using different sorbents in permeable barriers

  • Masood, Zehraa B.;Ali, Ziad Tark Abd
    • Environmental Engineering Research
    • /
    • 제25권4호
    • /
    • pp.605-613
    • /
    • 2020
  • This study is to investigate the possibility of using activated carbon prepared from Iraqi date-pits (ADP) which are produced from palm trees (Phoenix dactylifera L.) as low-cost reactive material in the permeable reactive barrier (PRB) for treating lead (Pb+2) from the contaminated groundwater, and then compare the results experimentally with other common reactive materials such as commercial activated carbon (CAC), zeolite pellets (ZP). Factors influencing sorption such as contact time, initial pH of the solution, sorbent dosage, agitation speed, and initial lead concentration has been studied. Two isotherm models were used for the description of sorption data (Langmuir and Freundlich). The maximum lead sorption capacities were measured for ADP, CAC, and ZP and were found to be 24.5, 12.125, and 4.45 mg/g, respectively. The kinetic data were analyzed using various kinetic models particularly pseudo-first-order, pseudo-second-order, and intraparticle diffusion. COMSOL Multiphysics 3.5a depend on finite element procedure was applied to formulate transmit of lead (Pb+2) in the two-dimensional numerical (2D) model under an equilibrium condition. The numerical solution shows that the contaminant plume is hindered by PRB.

태양광과 UV-A 빛 하에서 ZnO 을 이용한 Reactive Black 5의 광분해작용 (Photomineralisation of Reactive Black 5 with ZnO using Solar and UV-A Light)

  • Amisha, S.;Selvam, K.;Sobana, N.;Swaminathan, M.
    • 대한화학회지
    • /
    • 제52권1호
    • /
    • pp.66-72
    • /
    • 2008
  • 태양광과 UV-A빛 조건하에 수용액 속에서 디아조염료의 광 촉매분해반응에 대해 조사를 해보았다. 염료의 광 촉매 분해반응에는 염료의 농도, 촉매 량, 그리고 pH와 같은 여러 가지 영향 요소들이 존재한다. 과산화수소, ammonium persulphate와 isopropanol 등의 첨가는 분해비율에 대해 큰 영향을 미친다. Langmuir-Hinshelwood model에 근거한 광 분해반응의 동역학적분석은 광분해반응은 대략적으로 pseudo first order kinetics을 따름을 알 수 있다. 광분해산물로 이산화탄소, 질산염, sulphate 이온 등이 증명되었다. 광 촉매, ZnO는 태양광 하에서보다 UV-A빛 하에서 더욱 효율적임을 발견하였다.

Removal of Cu (II) and Cd (II) Ions Onto Water Hyacinth Based Carbonaceous Materials

  • Amina, A. Attia;Shouman, Mona.A.;Khedr, S.A.;El-Nabarawy, Th.
    • Carbon letters
    • /
    • 제7권4호
    • /
    • pp.249-258
    • /
    • 2006
  • Treatment of water hyacinth with sulphuric acid produces carbonaceous materials that have been used to remove Cu(II) and Cd (II) ions from aqueous solutions. Untreated water hyacinth was also used for the subject of comparison. The textural properties of the carbonaceous materials were determined from nitrogen adsorption at 77 K. The optimum pH for the sorption of Cu (II) and Cd (II) ions on the investigated sorbents was determined. Dynamic adsorption measurements have been taken at 298 K whereas equilibrium measurements were carried out at 298, 313 and 323 K. The adsorption of nitrogen at 77 K on the untreated sample was too low and the surface areas of the treated samples 2, 3 and 4 were found between $70-208\;m^2/g$. The total pore volumes of these samples which were determined for the carbonaceous materials investigated were found to be 0.076-0.140 ml/g. The kinetic adsorption data of Cu (II) and Cd(II) were applicable to both pseudo - first and pseudo-second order but fit more the latter order. The equilibrium adsorption data were found to fit Freundlich and Langmiur equations. The values of DG, DH and DS are all negative indicating the feasibility and the spontaneous nature of the sorption of Cu (II) and Cd (II) ions by the sorbents investigated.

  • PDF

Adsorption of Phenol on Mesoporous Carbon CMK-3: Effect of Textural Properties

  • Haque, Enamul;Khan, Nazmul Abedin;Talapaneni, Siddulu Naidu;Vinu, Ajayan;JeGal, Jong-Geon;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1638-1642
    • /
    • 2010
  • Mesoporous carbon CMK-3s with different textural properties have been used for the adsorption of phenol to understand the necessary physicochemical properties of carbon for the efficient removal of phenol from contaminated water. The kinetic constants (both pseudo-second order and pseudo-first-order kinetics) increase with increasing pore size of carbons. The maximum adsorption capacities correlate well with micropore volume compared with surface area or total pore volume even though large pore (meso or macropore) may contribute partly to the adsorption. The pore occupancies also explain the importance of micropore for the phenol adsorption. For efficient removal of phenol, carbon adsorbents should have large micropore volume and wide pore size for high uptake and rapid adsorption, respectively.

Coconut husk as a biosorbent for methylene blue removal and its kinetics study

  • Dave, Shailesh R.;Dave, Vaishali A.;Tipre, Devayani R.
    • Advances in environmental research
    • /
    • 제1권3호
    • /
    • pp.223-236
    • /
    • 2012
  • Biosorption of methylene blue (MB) from aqueous solution was studied with respect to the point of zero charge of coconut husk, dye concentration, particle size, pH, temperature, as well as adsorbent and NaCl concentration using coconut husk biomass. Amongst Langmuir and Freundlich adsorption isotherms studied, Langmuir adsorption isotherm showed better agreement. Pseudo second order kinetics model was found to be more suitable for data presentation as compared to pseudo first order kinetics model. Also, involvement of diffusion process was studied using intraparticle diffusion, external mass transfer and Boyd kinetic model. Involvement of intraparticle diffusion model was found to be more relevant (prominent) as compared to external mass transfer (in) for methylene blue biosorption by the coconut husk. Moreover, thermodynamic properties of MB biosorption by coconut husk were studied. Desorption of methylene blue from biomass was studied with different desorbing agents, and the highest desorption achieved was as low as 7.18% with acetone, which indicate stable immobilization. Under the experimental conditions MB sorption was not significantly affected by pH, temperature and adsorbent concentration but low sorption was observed at higher NaCl concentrations.

Biosorption of Methylene Blue from Aqueous Solution Using Xanthoceras sorbifolia Seed Coat Pretreated by Steam Explosion

  • Yao, Zeng-Yu;Qi, Jian-Hua
    • Journal of Forest and Environmental Science
    • /
    • 제32권3호
    • /
    • pp.253-261
    • /
    • 2016
  • Xanthoceras sorbifolia seed coat (XSSC) is a processing residue of the bioenergy crop. This work aimed to evaluate the applicability of using the steam explosion to modify the residue for dye biosorption from aqueous solutions by using methylene blue as a model cationic dye. Equilibrium, kinetic and thermodynamic parameters for the biosorption of methylene blue on the steam-exploded XSSC (SE-XSSC) were evaluated. The kinetic data followed the pseudo-second-order model, and the rate-limiting step was the chemical adsorption. Intraparticle diffusion was one of the rate-controlling factors. The equilibrium data agreed well with the Langmuir isotherm, and the biosorption was favorable. The steam-explosion pretreatment strongly affected the biosorption in some respects. It reduced the adsorption rate constant and the initial sorption rate of the pseudo-second-order model. It enhanced the adsorption capacity of methylene blue at higher temperatures while reduced the capacity at lower ones. It changed the biosorption from an exothermic process driven by both the enthalpy and the entropy to an endothermic one driven by entropy only. It increased the surface area and decreased the pH point of zero charge of the biomass. Compared with the native XSSC, SE-XSSC is preferable to MB biosorption from warmer dye effluents.