• Title/Summary/Keyword: pseudo order

Search Result 1,051, Processing Time 0.024 seconds

Effects of Calcium on TCE Degradation Reaction in Cement/Fe(II) and Hematite/Fe(II) Systems (시멘트/Fe(II) 및 hematite/Fe(II) 시스템의 TCE 분해반응 시 Ca 성분의 영향)

  • Kim, Hong-Seok;Hwang, Kyung-Yup;Ahn, Jun-Young;Yi, Jou-Young;Hwang, In-Seong
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.82-90
    • /
    • 2011
  • Reactive reductants of cement/Fe(II) systems in dechlorinating chlorinated hydrocarbons have not been identified. The previous studies showed that a hematite/CaO/Fe(II) system had TCE degradation characteristics similar to those of cement/Fe(II) systems with regard to degradation kinetics and that lime (CaO) plays an important role in enhancing the reactivity for TCE dechlorination. The current study shows identified the formation of gypsum ($CaSO_4$) in the hematite/CaO/$FeSO_4$ system through the XRD analysis. The amounts of the gypsum increased with increment of the initial CaO dose. However, when CaO in the hematite/CaO/$FeSO_4$ system was replaced with gypsum, TCE degradation was not observed. Ca-removed Portland cement extracts (CPCX) in combination with $FeSO_4(CPCX/FeSO_4)$ showed no TCE degradation. On the other hands, the Portland cement extracts (PCX) in the presence of $FeSO_4(PCX/FeSO_4)$ and CPCX/CaO/$FeSO_4$ systems degraded 0.2 mM TCE within 5 days, indicating that CaO also played an important role dechlorination reactions in the systems. The pseudo-first-order rate constants (k) of the CPCX/CaO/$FeSO_4$ systems were 0.20, 0.24, and 0.72 $day^{-1}$, when the CaO dosages were 25, 50 and 75 g/L, respectively. The XRD analyses showed identified the common peaks having the d-values of 3.02, 2.27, and 1.87 in the reaction systems that showed TCE degradation. However, it was not possible to clearly identify the crystalline minerals having the three peaks from the references in JCPDS cards. This study reveals that the reactive agents in the cement/Fe(II) and the hematite/Fe(II) systems are likely to be those containing CaO and Fe(II).

Environmental Characteristics and Vegetation of Hanabusaya asiatica Habitats (금강초롱꽃 자생지의 환경특성과 식생)

  • Jang, Su-Kil;Cheon, Kyeong-Sik;Jeong, Ji-Hee;Kim, Zin-Suh;Yoo, Ki-Oug
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.497-506
    • /
    • 2010
  • This study intended to investigate the environmental factors including soil and vegetation in order to better understand the environmental and ecological characteristics of ten different habitats of $Hanabusaya$ $asiatica$. These habitats, according to investigations, are mostly located on the slopes of mountains facing north at an altitude of 580 m to 1,396 m above sea level with angles of inclination ranging from 5 degrees to 80 degrees. A total of 146 vascular plant taxa are identified in 32 quadrates of the ten habitats. The importance value of $H.$ $asiatica$ is 8.87%, and 5 highly ranked species such as $Carex$ $siderosticta$ (8.67%), $Ainsliaea$ $acerifolia$ var. $subapoda$ (7.10%), $Calamagrostis$ $arundinacea$ (6.79%), $Athyrium$ $yokoscense$ (5.33%), $Astilbe$ $rubra$ (3.11%) are considered to be an affinity with $H.$ $asiatica$ in their habitats. Dominant species of woody plants in ten habitats are represented as $Quercus$ $mongolica$ in tree layer (T1), $Acer$ $pseudo$-$sieboldianum$ in subtree layer (T2), $Rhododendron$ $schlippenbachii$ and $Tripterygium$ $regelii$ in shrub layer (S). The degree of their average species diversity is 1.30, and that of dominance and evenness are 0.08 and 0.88, respectively. The type of soil is sandy loam, loam and loamy sand, and the average field capacity of soil is 23.95%. Their average organic matter is 12.28%, soil pH 5.79, and available phosphorus is 25.48%. Correlation coefficients analysis based on environmental factors, vegetation and soil analysis shows that the coverage of tree layers is correlated with richness, diversity, dominance, evenness and coverage of $H.$ $asiatica$.

Equilibrium, Kinetics and Thermodynamic Parameters Studies on Metanil Yellow Dye Adsorption by Granular Activated Carbon (입상활성탄에 의한 메타닐 옐로우 염료의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.96-102
    • /
    • 2014
  • Adsorption of metanil yellow onto granular activated carbon were studied in a batch system. Various operation parameters such as adsorbent dosage, pH, initial concentration, contact time and temperature were optimized. Experimental equilibrium adsorption data were analyzed by Langmuir and Freundlich adsorption isotherm. The equilibrium process was described well by Freundlich isotherm model. From determined separation factor (1/n), adsorption of metanil yellow by granular activated carbon could be employed as effective treatment method. By analysis of kinetic experimental data, the adsorption process were found to confirm to the pseudo second order model with good correlation and the adsorption rate constant ($k^2$) decreased with increasing initial concentration. Thermodynamic parameters like activation energy, change of free energy, enthalpy, and entropy were also calculated to predict the nature adsorption in the temperature range of 298~318 K. The activation energy was determined as 23.90 kJ/mol. It was found that the adsortpion of metanil yellow on the granular activated carbon was physical process. The negative Gibbs free energy change (${\Delta}G=-2.16{\sim}-6.55kJ/mol$) and the positive enthalpy change (${\Delta}H=+23.29kJ/mol$) indicated the spontaneous and endothermic nature of the adsorption process, respectively.

Adsorption Characteristics of Reactive Red 120 by Coal-based Granular Activated Carbon : Isotherm, Kinetic and Thermodynamic Parameters (석탄계 입상활성탄에 의한 Reactive Red 120의 흡착 특성 : 등온선, 동력학 및 열역학 파라미터)

  • Lee, Jong Jib
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.164-171
    • /
    • 2020
  • Adsorption characteristics of reactive red 120 (RR 120) dye by a coal-based granular activated carbon (CGAC) from an aqueous solution were investigated using the amount of activated carbon, pH, initial concentration, contact time and temperature as adsorption variables. Isotherm equilibrium relationship showed that Langmuir's equation fits better than that of Freundlich's equation. The adsorption mechanism was considered to be superior to the adsorption of monolayer with uniform energy distribution. From the evaluated Langmuir separation coefficients (RL = 0.181~0.644), it was found that this adsorption process belongs to an effective treatment area (RL = 0~1). The adsorption energy determined by Temkin's equation and Dubinin-Radushkevich's equation was E = 15.31~7.12 J/mol and B = 0.223~0.365 kJ/mol, respectively. The adsorption process showed the physical adsorption (E < 20 J/mol and B < 8 kJ/mol). The adsorption kinetics followed the pseudo first order model. The adsorption reaction of RR 120 dye on CGAC was found to increase spontaneously with increasing the temperature because the free energy change decreased with increasing the temperature. The enthalpy change (12.747 kJ/mol) indicated an endothermic reaction. The isosteric heat of adsorption (△Hx = 9.78~24.21 kJ/mol) for the adsorption reaction of RR 120 by CGAC was revealed to be the physical adsorption (△Hx < 80 kJ/mol).

Pseudo-Static Behaviors of U-shaped PSC Girder with Wide Flanges (확폭플랜지를 갖는 U형 프리스트레스 거더의 유사정적거동)

  • Rhee, In-Kyu;Lee, Joo-Beom;Kim, Lee-Hyeon;Park, Joo-Nam;Kwak, Jong-Won
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.993-999
    • /
    • 2008
  • A girder height limitation is the critical parameter for rapid construction of bridge deck and construction space limitation especially in urban area such as high population area and high density habitats. A standard post-tensioned I-shaped concrete girder usually demands relatively higher girder height in order to retain sufficient moment arm between compression force and tensile force. To elaborate this issue, a small U-shaped section with wide flanges can be used as a possible replacement of I-shaped standard girder. This prestressed concrete box girder allows more flexible girder height adjustment rather than standard I-shaped post-tensioned girder plus additional torsion resistance benefits of closed section. A 30m-long, 1.7m-high and 3.63m-wide actual small prestressed concrete box girder is designed and a laboratory test for its static behaviors by applying 6,200kN amount of load in the form of 4-point bending test was performed. The load-deflection curve and crack patterns at different loading stage are recorded. In addition, to extracting the dynamic characteristics such as natural frequency and damping ratio of this girder, several excitation tests with artificial mechanical exciter with un-symmetric mass are carried out using operational frequency sweep-up. Nonlinear finite element analysis of this 4 point bending test under monotonic static load is investigated and discussed with aids of concrete damaged plasticity formulation using ABAQUS program.

  • PDF

Distribution of Naturalized Plants in Dadohae National Marine Park (다도해 해상국립공원의 귀화식물 분포 특성)

  • Kim, Ha-Song;Oh, Jang-Geun
    • Korean Journal of Plant Resources
    • /
    • v.23 no.2
    • /
    • pp.187-196
    • /
    • 2010
  • A total of 10 islands (Kumodo and Komundo in Yeosu City; Oinarodo in Goheung County; Chongsando, Soando, and Pogildo in Wando County; Chodo in Jindo County; Uido, Huksando, and Hongdo in Shinan County) were surveyed to confirm distribution of naturalized plants from June 2006 to December 2008. A total of 100 naturalized plants taxa from 25 families were recorded. The highest number of naturalized plant species (82 taxa) was recorded on Oinarodo, while the lowest number was recorded on Hongdo (42 taxa) and on Uido (34 taxa). A total of 26 naturalized species taxa (such as Dactylis glomerata, Lolium perenne, Bromus unioloides, Rumex obtusifolius, Chenopodium album, Phytolacca americana, Barbarea vulgaris, Lepidium apetalum, Robinia pseudo-acacia, Trifolium repens, Erigeron annuus, Erigeron canadensis, Senecio vulgaris, Xanthium strumarium) was recorded in all study areas. Distribution of naturalized plants were categorized into 7 habitat types based on ecological traits: afforested land, beach, port, and vacant land, road boundary, road cut and slope area, waste arable land, landfill area, and wetland. Systematic management is required to conserve unique landscape, species diversity, vegetation and ecosystem of Dadohae National Park. In order to manage the naturalized plants in Dadohae National Park, basic surveys are most needed to understand distribution and dispersal of naturalized plants communities based on ecological features of each habitat type.

Adsorption Characteristics of Brilliant Green by Coconut Based Activated Carbon : Equilibrium, Kinetic and Thermodynamic Parameter Studies (야자계 입상 활성탄에 의한 brilliant green의 흡착 특성 : 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.198-205
    • /
    • 2019
  • The adsorption equilibrium, kinetic, and thermodynamic parameters of brilliant green adsorbed by coconut based granular activated carbon were determined from various initial concentrations ($300{\sim}500mg\;L^{-1}$), contact time (1 ~ 12 h), and adsorption temperature (303 ~ 323 K) through batch experiments. The equilibrium adsorption data were analyzed by Langmuir, Freundlich, Temkin, Harkins-Jura, and Elovich isotherm models. The estimated Langmuir dimensionless separation factor ($R_L=0.018{\sim}0.040$) and Freundlich constant ($n^{-1}=0.176{\sim}0.206$) show that adsorption of brilliant green by activated carbon is an effective treatment process. Adsorption heat constants ($B=12.43{\sim}17.15J\;mol^{-1}$) estimated by the Temkin equation corresponded to physical adsorption. The isothermal parameter ($A_{HJ}$) by the Harkins-Jura equation showed that the heterogeneous pore distribution increased with increasing temperature. The maximum adsorption capacity by the Elovich equation was found to be much smaller than the experimental value. The adsorption process was best described by the pseudo second order model, and intraparticle diffusion was a rate limiting step in the adsorption process. The intraparticle diffusion rate constant increased because the dye activity increased with increases in the initial concentration. Also, as the initial concentration increased, the influence of the boundary layer also increased. Negative Gibbs free energy ($-10.3{\sim}-11.4kJ\;mol^{-1}$), positive enthalpy change ($18.63kJ\;mol^{-1}$), and activation energy ($26.28kJ\;mol^{-1}$) indicate respectively that the adsorption process is spontaneous, endothermic, and physical adsorption.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.

The Most Efficient Extension Field For XTR (XTR을 가장 효율적으로 구성하는 확장체)

  • 한동국;장상운;윤기순;장남수;박영호;김창한
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.6
    • /
    • pp.17-28
    • /
    • 2002
  • XTR is a new method to represent elements of a subgroup of a multiplicative group of a finite field GF( $p^{6m}$) and it can be generalized to the field GF( $p^{6m}$)$^{[6,9]}$ This paper progress optimal extention fields for XTR among Galois fields GF ( $p^{6m}$) which can be aplied to XTR. In order to select such fields, we introduce a new notion of Generalized Opitimal Extention Fields(GOEFs) and suggest a condition of prime p, a defining polynomial of GF( $p^{2m}$) and a fast method of multiplication in GF( $p^{2m}$) to achieve fast finite field arithmetic in GF( $p^{2m}$). From our implementation results, GF( $p^{36}$ )longrightarrowGF( $p^{12}$ ) is the most efficient extension fields for XTR and computing Tr( $g^{n}$ ) given Tr(g) in GF( $p^{12}$ ) is on average more than twice faster than that of the XTR system on Pentium III/700MHz which has 32-bit architecture.$^{[6,10]/ [6,10]/6,10]}$