• Title/Summary/Keyword: pruning technique

Search Result 52, Processing Time 0.025 seconds

A Query Pruning Technique for Optimizing Regular Path Expressions in Semistructured Databases (준구조적 데이타베이스에서의 정규경로표현 최적화를 위한 질의전지 기법)

  • Park, Chang-Won;Jeong, Jin-Wan
    • Journal of KIISE:Databases
    • /
    • v.29 no.3
    • /
    • pp.217-229
    • /
    • 2002
  • Regular path expressions are primary elements for formulating queries over the semistructured data that does not assume the conventional schemas. In addition, the query pruning is an important optimization technique to avoid useless traversals in evaluating regular path expressions. However, the existing query pruning often fails to fully optimize multiple regular path expressions, and the previous methods that post-process the result of the existing query pruning must check exponential combinations of sub-results. In this paper, we present a new query pruning technique that consists of the preprocessing phase and the pruning phase. Our two-phase query pruning is affective in optimizing multiple regular path expressions, and is more scalable than the previous methods in that it never check the exponential combinations of sub-results.

Optimized Network Pruning Method for Li-ion Batteries State-of-charge Estimation on Robot Embedded System (로봇 임베디드 시스템에서 리튬이온 배터리 잔량 추정을 위한 신경망 프루닝 최적화 기법)

  • Dong Hyun Park;Hee-deok Jang;Dong Eui Chang
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • Lithium-ion batteries are actively used in various industrial sites such as field robots, drones, and electric vehicles due to their high energy efficiency, light weight, long life span, and low self-discharge rate. When using a lithium-ion battery in a field, it is important to accurately estimate the SoC (State of Charge) of batteries to prevent damage. In recent years, SoC estimation using data-based artificial neural networks has been in the spotlight, but it has been difficult to deploy in the embedded board environment at the actual site because the computation is heavy and complex. To solve this problem, neural network lightening technologies such as network pruning have recently attracted attention. When pruning a neural network, the performance varies depending on which layer and how much pruning is performed. In this paper, we introduce an optimized pruning technique by improving the existing pruning method, and perform a comparative experiment to analyze the results.

Model Structuring Technique by A Knowledge Representation Scheme: A FMS Fractal Architecture Example (지식 표현 기법을 이용한 모델 구조의 표현과 구성 : 단편구조 유연생산 시스템 예)

  • 조대호
    • Journal of the Korea Society for Simulation
    • /
    • v.4 no.1
    • /
    • pp.1-11
    • /
    • 1995
  • The model of a FMS (Flexible Manufacturing System) admits to a natural hierarchical decomposition of highly decoupled units with similar structure and control. The FMS fractal architecture model represents a hierarchical structure built from elements of a single basic design. A SES (System Entity Structure) is a structural knowledge representation scheme that contains knowledge of decomposition, taxonomy, and coupling relationships of a system necessary to direct model synthesis. A substructure of a SES is extracted for use as the skeleton for a model. This substructure is called pruned SES and the extraction operation of a pruned SES from a SES is called pruning (or pruning operation). This paper presents a pruning operation called recursive pruning. It is applied to SES for generating a model structure whose sub-structure contains copies if itself as in FMS fractal architecture. Another pruning operation called delay pruning is also presented. Combined with recursive pruning the delay pruningis a useful tool for representing and constructing complex systems.

  • PDF

Performance Analysis of Layer Pruning on Sphere Decoding in MIMO Systems

  • Karthikeyan, Madurakavi;Saraswady, D.
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.564-571
    • /
    • 2014
  • Sphere decoding (SD) for multiple-input and multiple-output systems is a well-recognized approach for achieving near-maximum likelihood performance with reduced complexity. SD is a tree search process, whereby a large number of nodes can be searched in an effort to find an estimation of a transmitted symbol vector. In this paper, a simple and generalized approach called layer pruning is proposed to achieve complexity reduction in SD. Pruning a layer from a search process reduces the total number of nodes in a sphere search. The symbols corresponding to the pruned layer are obtained by adopting a QRM-MLD receiver. Simulation results show that the proposed method reduces the number of nodes to be searched for decoding the transmitted symbols by maintaining negligible performance loss. The proposed technique reduces the complexity by 35% to 42% in the low and medium signal-to-noise ratio regime. To demonstrate the potential of our method, we compare the results with another well-known method - namely, probabilistic tree pruning SD.

Modeling strength of high-performance concrete using genetic operation trees with pruning techniques

  • Peng, Chien-Hua;Yeh, I-Cheng;Lien, Li-Chuan
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.203-223
    • /
    • 2009
  • Regression analysis (RA) can establish an explicit formula to predict the strength of High-Performance Concrete (HPC); however, the accuracy of the formula is poor. Back-Propagation Networks (BPNs) can establish a highly accurate model to predict the strength of HPC, but cannot generate an explicit formula. Genetic Operation Trees (GOTs) can establish an explicit formula to predict the strength of HPC that achieves a level of accuracy in between the two aforementioned approaches. Although GOT can produce an explicit formula but the formula is often too complicated so that unable to explain the substantial meaning of the formula. This study developed a Backward Pruning Technique (BPT) to simplify the complexity of GOT formula by replacing each variable of the tip node of operation tree with the median of the variable in the training dataset belonging to the node, and then pruning the node with the most accurate test dataset. Such pruning reduces formula complexity while maintaining the accuracy. 404 experimental datasets were used to compare accuracy and complexity of three model building techniques, RA, BPN and GOT. Results show that the pruned GOT can generate simple and accurate formula for predicting the strength of HPC.

Dynamic Adjustment of the Pruning Threshold in Deep Compression (Deep Compression의 프루닝 문턱값 동적 조정)

  • Lee, Yeojin;Park, Hanhoon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • Recently, convolutional neural networks (CNNs) have been widely utilized due to their outstanding performance in various computer vision fields. However, due to their computational-intensive and high memory requirements, it is difficult to deploy CNNs on hardware platforms that have limited resources, such as mobile devices and IoT devices. To address these limitations, a neural network compression research is underway to reduce the size of neural networks while maintaining their performance. This paper proposes a CNN compression technique that dynamically adjusts the thresholds of pruning, one of the neural network compression techniques. Unlike the conventional pruning that experimentally or heuristically sets the thresholds that determine the weights to be pruned, the proposed technique can dynamically find the optimal thresholds that prevent accuracy degradation and output the light-weight neural network in less time. To validate the performance of the proposed technique, the LeNet was trained using the MNIST dataset and the light-weight LeNet could be automatically obtained 1.3 to 3 times faster without loss of accuracy.

Improved LC-trie for Efficient IP Address Lookup (효율적인 IP 주소 검색을 위한 개선된 LC-trie)

  • Kim, Jin-Soo;Kim, Jung-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.3
    • /
    • pp.50-59
    • /
    • 2007
  • IP address lookup is one of the most important and complex functions in the router. In this paper, we propose an improved technique of LC-trie to increase the performance of IP address lookup in the high performance router. We effectively apply the prefix pruning method, which is used for the compression of the forwarding table in TCAM((Ternary Content Addressable Memory), to the LC-trie. This technique can decrease the number of memory accesses and upgrade the lookup speed. Moreover, through the real forwarding table and the real traffic distribution, we evaluate the performance of our scheme in terms of the lookup time and the number of memory access, comparing with that of the previous LC-trie.

A New Pruning Method for Synthesis Database Reduction Using Weighted Vector Quantization

  • Kim, Sanghun;Lee, Youngjik;Keikichi Hirose
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4E
    • /
    • pp.31-38
    • /
    • 2001
  • A large-scale synthesis database for a unit selection based synthesis method usually retains redundant synthesis unit instances, which are useless to the synthetic speech quality. In this paper, to eliminate those instances from the synthesis database, we proposed a new pruning method called weighted vector quantization (WVQ). The WVQ reflects relative importance of each synthesis unit instance when clustering the similar instances using vector quantization (VQ) technique. The proposed method was compared with two conventional pruning methods through the objective and subjective evaluations of the synthetic speech quality: one to simply limit maximum number of instance, and the other based on normal VQ-based clustering. The proposed method showed the best performance under 50% reduction rates. Over 50% of reduction rates, the synthetic speech quality is not seriously but perceptibly degraded. Using the proposed method, the synthesis database can be efficiently reduced without serious degradation of the synthetic speech quality.

  • PDF

Application and Performance Analysis of Double Pruning Method for Deep Neural Networks (심층신경망의 더블 프루닝 기법의 적용 및 성능 분석에 관한 연구)

  • Lee, Seon-Woo;Yang, Ho-Jun;Oh, Seung-Yeon;Lee, Mun-Hyung;Kwon, Jang-Woo
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.8
    • /
    • pp.23-34
    • /
    • 2020
  • Recently, the artificial intelligence deep learning field has been hard to commercialize due to the high computing power and the price problem of computing resources. In this paper, we apply a double pruning techniques to evaluate the performance of the in-depth neural network and various datasets. Double pruning combines basic Network-slimming and Parameter-prunning. Our proposed technique has the advantage of reducing the parameters that are not important to the existing learning and improving the speed without compromising the learning accuracy. After training various datasets, the pruning ratio was increased to reduce the size of the model.We confirmed that MobileNet-V3 showed the highest performance as a result of NetScore performance analysis. We confirmed that the performance after pruning was the highest in MobileNet-V3 consisting of depthwise seperable convolution neural networks in the Cifar 10 dataset, and VGGNet and ResNet in traditional convolutional neural networks also increased significantly.

Training for Huge Data set with On Line Pruning Regression by LS-SVM

  • Kim, Dae-Hak;Shim, Joo-Yong;Oh, Kwang-Sik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2003.10a
    • /
    • pp.137-141
    • /
    • 2003
  • LS-SVM(least squares support vector machine) is a widely applicable and useful machine learning technique for classification and regression analysis. LS-SVM can be a good substitute for statistical method but computational difficulties are still remained to operate the inversion of matrix of huge data set. In modern information society, we can easily get huge data sets by on line or batch mode. For these kind of huge data sets, we suggest an on line pruning regression method by LS-SVM. With relatively small number of pruned support vectors, we can have almost same performance as regression with full data set.

  • PDF