• Title/Summary/Keyword: prototype tooling

Search Result 23, Processing Time 0.025 seconds

Process developments for direct manufacturing of metallic prototypes (금속시제품의 신속제작을 위한 공정기술개발)

  • 송용억
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.605-609
    • /
    • 1996
  • In order to ensure that the prototype corresponds as closely as possible to the serial part subsequently to be manufactured, the materials used for the prototye should, wherever possible, be identical to those used in production. In case of metallic parts, however, this demand is still not completely fulfilled by the available Rapid Prototyping techniques. Since only conventional manufacturing processes caan currentlybe used to produce metallic prototypes directly, these are extremely cost and labor intensive. For this reason, work is being undertaken worldwide to develop Selective Laser Sintering (referred to SLS) and Laser Generating for direct manufacture of metallic parts. In this paper the results of both process developments are reported. As the present results show, they have great application potentials in prototyping tools, especially molds and dies.

  • PDF

Investigation into the development of deep drawing tools with small size for electronic parts utilizing the CAE and RP/RT technology (CAE 와 쾌속조형/쾌속툴링을 이용한 전자제품용 소형 금형의 개발에 관한 연구)

  • Ahn D.G.;Lee S.H.;Kim M.S.;Han G.Y.;Kim J.S.;Moon H.S.;Yoon Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.334-337
    • /
    • 2005
  • The objective of this research works is to propose a rapid development methodology of small size deep drawing tools for electronic parts utilizing the technology combination of CAE and RP/RT. The technology is applied to the development of deep drawing tools with a drain shape. The final surface of tools is obtained from the evaluation of the formability using the CAE. In order to manufacture the physical prototype of tools fer try-out terming, several fabrication experiments are carried out for three types of rapid tool manufacturing technology. Through the fabrication experiments, the acceptable rapid manufacturing technologies of deep drawing tools with a small size have been proposed.

  • PDF

A Study on the Mechanical Properties of Al2O3 Cutting Tools by DLP-based 3D Printing (DLP 기반 3D 프린팅으로 제조된 Al2O3 절삭공구의 기계적 물성 연구)

  • Lee, Hyun-Been;Lee, Hye-Ji;Kim, Kyung-Ho;Kim, Kyung-Min;Ryu, Sung-Soo;Han, Yoonsoo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.508-514
    • /
    • 2019
  • In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.