• Title/Summary/Keyword: proton therapy

Search Result 250, Processing Time 0.042 seconds

Influence of Intravenous Contrast Medium on Proton range and SOBP(Spread-Out Bragg peak) (조영제 사용이 양성자 Range와 SOBP(Spread-Out Bragg peak)에 미치는 영향)

  • Kim, Ho Sik;Choi, Seung Oh;Kim, Eun Sook;Jeon, Sang Min;Youm, Doo Seok
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.183-189
    • /
    • 2014
  • Purpose : Intravenous contrast medium is a substance used to enhance the contrast of normal tissues or malignant tissues within the body. For this reason, intravenous contrast media have been extensively used form treatment-planning CT. However, when the patient is receiving proton therapy, there is no contrast medium in that moment. In this study, evaluate the influence of intravenous contrast medium on proton range and Spread-Out Bragg peak(SOBP) in Treatment Planning System(TPS). Materials and Methods : Hounsfield Unit(HU) value were measured by 20 liver cancer patients with phase change. and evaluate the proton range and SOBP on 5 liver proton treatment plan. By using the hand made water phantom measure the proton range and SOBP on proton treatment plan with changing HU and Depth. Results : Changing value(Pre contrast, Arterial phase, Portal phase) in liver cancer patient were ($58{\pm}5.7$, $75{\pm}9.5$, $117{\pm}14.6$ for liver tissue) and ($40{\pm}6.1$, $279{\pm}49.0$, $154{\pm}22.8$ for aorta), respectively. The mean difference of range was 2.5mm and SOBP was 1.4mm according to HU change. In phantom study, proton range was shorter and SOBP was narrowed with increasing HU. Conclusion : We verify that HU change lead to range and SOBP change in TPS. Additional study is required to verify that change of HU make range and SOBP be changed in actual substance.

A Study of Radiation Exposure in Proton Therapy Facility (양성자치료기 가속기 시설에서의 작업종사자의 방사선 피폭 연구)

  • Lee, Sang-Hoon;Shin, Dong-Ho;Yoon, Myong-Geun;Shin, Jung-Wook;Rah, Jeong-Eun;Kwak, Jung-Won;Park, Sung-Yong;Shin, Kyung-Hwan;Lee, Doo-Hyun;Ahn, Sung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Proton therapy facility, which is recently installed at National Cancer Center in Korea, generally produces a large amount of radiation near cyclotron due to the secondary particles and radioisotopes caused by collision between proton and nearby materials during the acceleration. Although the level of radiation by radioisotope decreases in length of time, radiation exposure problem still exists since workers are easily exposed by a low level of radiation for a long time due to their job assignment for maintenance or repair of the proton facility. In this paper, the working environment near cyclotron, where the highest radiation exposure is expected, was studied by measuring the degree of radiation and its duration for an appropriate level of protective action guide. To do this, we measured the radiation change in the graphite based energy degrader, the efficiency of transmitted beam and relative activation degree of the transmission beam line. The results showed that while the level of radiation exposure around cyclotron and beam line during the operation is much higher than the other radiation therapy facilities, the radiation exposure rate per year is under the limit recommended by the law showing 1~3 mSv/year.

  • PDF

Particle-based simulation of proton therapy for QA

  • Yasuoka, Kiyoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 1999.11a
    • /
    • pp.69-72
    • /
    • 1999
  • We present a method of quality assurance (QA) for dose and dose distribution anticipated in treatment planning at proton therapy using a particle-based simulation method.

  • PDF

Proton therapy: Literature review of clinical effectiveness as an advanced convergent cancer therapy (양성자 치료: 융복합 첨단 암 치료로서의 임상적 유효성에 대한 문헌 고찰)

  • Park, Hyojung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.191-198
    • /
    • 2018
  • This study was conducted to evaluate the clinical effectiveness of proton therapy as an advanced convergent cancer therapy. Clinical data of proton therapy were analyzed. As proton enters patient's body, it releases low dose of energy and shows an increasing energy deposition as it reaches certain point unlike x-ray. It may therefore reduce the radiation dose to the normal tissues in front and beyond the lesion and minimize the radiation damage. Proton therapy is expected to improve clinical outcomes and reduce treatment related toxicities. It is used in various cancers. Further studies are necessary.

A Comparison for Treatment Planning of Tomotherapy and Proton Therapy in Prostate Cancer (전립선암에 대한 토모치료와 양성자치료의 치료계획 비교)

  • Song, Gwan-Soo;Bae, Jong-Rim;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.36 no.1
    • /
    • pp.31-38
    • /
    • 2013
  • The prostate cancer is the most common malignant tumor in males. Prostate cancer is the most common malignant tumor that occurs in the male in Korea in 2007 to an annual average of 5,292 cases and 3.3% of the total cancer incidence seventh occurred. Our study compared property for tomotherapy and proton therapy in radiotherapy of prostate cancer patients. We analyzed DVH(Dose Volume Histogram) and dose distribution for prostate, bladder and rectum for radiation treatment planning of prostate cancer with 11 patients in Ilsan K cancer hospital from June to November 2011. There was no differences between tomotherapy and proton therapy in the purpose of prostate cancer therapy for PTV. The adjacent organs of bladder and rectum of average dose-volume were 2port proton therapy that it was low dose treatment comparing with tomotherapy and 5port proton therapy. $H{\cdot}I$ of proton therapy was less than $H{\cdot}I$ of tomotherapy. Also, 5port was less than 2port in $H{\cdot}I$ of proton therapy. However, 2port proton therapy has more advantage over 5port proton therapy that the bladder and rectum of average dose-volume and control time of equipment in radiotherapy of prostate cancer.

Therapeutic Proton Beam Range Measurement with EBT3 Film and Comparison with Tool for Particle Simulation

  • Lee, Nuri;Kim, Chankyu;Song, Mi Hee;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.112-119
    • /
    • 2019
  • Purpose: The advantages of ocular proton therapy are that it spares the optic nerve and delivers the minimal dose to normal surrounding tissues. In this study, it developed a solid eye phantom that enabled us to perform quality assurance (QA) to verify the dose and beam range for passive single scattering proton therapy using a single phantom. For this purpose, a new solid eye phantom with a polymethyl-methacrylate (PMMA) wedge was developed using film dosimetry and an ionization chamber. Methods: The typical beam shape used for eye treatment is approximately 3 cm in diameter and the beam range is below 5 cm. Since proton therapy has a problem with beam range uncertainty due to differences in the stopping power of normal tissue, bone, air, etc, the beam range should be confirmed before treatment. A film can be placed on the slope of the phantom to evaluate the Spread-out Bragg Peak based on the water equivalent thickness value of PMMA on the film. In addition, an ionization chamber (Pin-point, PTW 31014) can be inserted into a hole in the phantom to measure the absolute dose. Results: The eye phantom was used for independent patient-specific QA. The differences in the output and beam range between the measurement and the planned treatment were less than 1.5% and 0.1 cm, respectively. Conclusions: An eye phantom was developed and the performance was successfully validated. The phantom can be employed to verify the output and beam range for ocular proton therapy.

A Monte Carlo Simulation Study of a Therapeutic Proton Beam Delivery System Using the Geant4 Code (Geant4 몬테카를로 코드를 이용한 양성자 치료기 노즐의 전산모사)

  • Shin, Jungwook;Shim, Hyunha;Kwak, Jungwon;Kim, Dongwook;Park, Sungyong;Cho, Kwan Ho;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.226-232
    • /
    • 2007
  • We studied a Monte Carlo simulation of the proton beam delivery system at the National Cancer Center (NCC) using the Geant4 Monte Carlo toolkit and tested its feasibility as a dose verification framework. The Monte Carlo technique for dose calculation methodology has been recognized as the most accurate way for understanding the dose distribution in given materials. In order to take advantage of this methodology for application to external-beam radiotherapy, a precise modeling of the nozzle elements along with the beam delivery path and correct initial beam characteristics are mandatory. Among three different treatment modes, double/single-scattering, uniform scanning and pencil beam scanning, we have modeled and simulated the double-scattering mode for the nozzle elements, including all components and varying the time and space with the Geant4.8.2 Monte Carlo code. We have obtained simulation data that showed an excellent correlation to the measured dose distributions at a specific treatment depth. We successfully set up the Monte Carlo simulation platform for the NCC proton therapy facility. It can be adapted to the precise dosimetry for therapeutic proton beam use at the NCC. Additional Monte Carlo work for the full proton beam energy range can be performed.

  • PDF

Comparison of Helical TomoTherapy with Linear Accelerator Base Intensity-modulated Radiotherapy for Head & Neck Cases (두경부암 환자에 대한 선량체적 히스토그램에 따른 토모치료외 선형가속기기반 세기변조방사선치료의 정량적 비교)

  • Kim, Dong-Wook;Yoon, Myong-Geun;Park, Sung-Yong;Lee, Se-Byeong;Shin, Dong-Ho;Lee, Doo-Hyeon;Kwak, Jung-Won;Park, So-Ah;Lim, Young-Kyung;Kim, Jin-Sung;Shin, Jung-Wook;Cho, Kwan-Ho
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.89-94
    • /
    • 2008
  • TomoTherapy has a merit to treat cancer with Intensity modulated radiation and combines precise 3-D imaging from computerized tomography (CT scanning) with highly targeted radiation beams and rotating beamlets. In this paper, we comparing the dose distribution between TomoTherapy and linear accelerator based intensity modulated radiotherapy (IMRT) for 10 Head & Neck patients using TomoTherapy which is newly installed and operated at National Cancer Center since Sept. 2006. Furthermore, we estimate how the homogeneity and Normal Tissue Complication Probability (NTCP) are changed by motion of target. Inverse planning was carried out using CadPlan planning system (CadPlan R.6.4.7, Varian Medical System Inc. 3100 Hansen Way, Palo Alto, CA 94304-1129, USA). For each patient, an inverse IMRT plan was also made using TomoTherapy Hi-Art System (Hi-Art2_2_4 2.2.4.15, TomoTherapy Incorporated, 1240 Deming Way, Madson, WI 53717-1954, USA) and using the same targets and optimization goals. All TomoTherapy plans compared favorably with the IMRT plans regarding sparing of the organs at risk and keeping an equivalent target dose homogeneity. Our results suggest that TomoTherapy is able to reduce the normal tissue complication probability (NTCP) further, keeping a similar target dose homogeneity.

  • PDF

Dosimetry by Using EBT2 Film for Total Skin Electron Beam Therapy (TSET) (전신 피부 전자선 치료(TSET)에서 EBT2 필름을 사용한 선량측정)

  • Hwang, Ui-Jung;Rah, Jeong-Eun;Jeong, Ho-Jin;Ahn, Sung-Hwan;Kim, Dong-Wook;Lee, Sang-Yeob;Lim, Young-Gyung;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Park, Sung-Young;Pyo, Hong-Ryull;Chung, Weon-Kuu
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.60-69
    • /
    • 2010
  • For treatment of Total Skin Electron beam Therapy (TSET), measurement of dose at various conditions is need on the contrary to usual radiotherapy. When treating TSET with modified Stanford technique based on linear accelerator, the energy of treatment electron beam, the spatial dose distribution and the actual doses deposited on the surface of the patient were measured by using EBT2. The measured energy of the electron beam was agreed with the value that measured by ionization chamber, and the spatial dose distribution at the patient position and the doses at several point on the patient's skin could be easily measured by EBT2 film. The dose on the patient that was measured by EBT2 film showed good agreement with the data measured simultaneously by TLD. With the results of this study, it was proven that the EBT2 film can be one of the useful dosimeter for TSET.

3 Dimensional IMRT Quality Assurance using the Optimization Algorithm (최적화 알고리즘을 이용한 3차원 IMRT 정도관리)

  • Shin, Dong-Ho;Park, Dong-Hyun;Kim, Joo-Young;Park, Sung-Yong;Cho, Kwan-Ho
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.72-74
    • /
    • 2004
  • To accurately verify the does of intensity modulated radiation therapy(IMRT), we developed 2 dimensional dose verification algorithm using the global optimization methode and applied to clinic. We extended to study of 3 vdimensional optimization methode, and made of arcyl 3D IMRT phantom and 3D IMRT dose verification system for film dosimetry.

  • PDF