• 제목/요약/키워드: proteomic database

검색결과 34건 처리시간 0.022초

Genomic and Proteomic Databases: Foundations, Current Status and Future Applications

  • Navathe, Shamkant B.;Patil, Upen;Guan, Wei
    • Journal of Computing Science and Engineering
    • /
    • 제1권1호
    • /
    • pp.1-30
    • /
    • 2007
  • In this paper we have provided an extensive survey of the databases and other resources related to the current research in bioinformatics and the issues that confront the database researcher in helping the biologists. Initially we give an overview of the concepts and principles that are fundamental in understanding the basis of the data that has been captured in these databases. We briefly trace the evolution of biological advances and point out the importance of capturing data about genes, the fundamental building blocks that encode the characteristics of life and proteins that are the essential ingredients for sustaining life. The study of genes and proteins is becoming extremely important and is being known as genomics and proteomics, respectively. Whereas there are numerous databases related to various subfields of biology, we have maintained a focus on genomic and proteomic databases which are the crucial stepping stones for other fields and are expected to play an important role in the future applications of biology and medicine. A detailed listing of these databases with information about their sizes, formats and current status is presented. Related databases like molecular pathways and interconnection network databases are mentioned, but their full coverage would be beyond the scope of a single paper. We comment on the peculiar nature of the data in biology that presents special problems in organizing and accessing these databases. We also discuss the capabilities needed for database development and information management in the bioinformatics arena with particular attention to ontology development. Two research case studies based on our own research are summarized dealing with the development of a new genome database called Mitomap and the creation of a framework for discovery of relationships among genes from the biomedical literature. The paper concludes with an overview of the applications that will be driven from these databases in medicine and healthcare. A glossary of important terms is provided at the end of the paper.

Computing Post-translation Modification using FTMS

  • Shen, Wei;Sung, Wing-Kin;SZE, Siu Kwan
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.331-336
    • /
    • 2005
  • Post translational modifications (PTMs) discovery is an important problem in proteomic. In the past, people discover PTMs by Tandem Mass Spectrometer based on ‘bottom-up’ strategy. However, such strategy suffers from the problem of failing to discover all PTMs. Recently, due to the improvement in proteomic technology, Taylor et al. proposed a database software to discover PTMs with ‘topdown’ strategy by FTMS, which avoids the disadvantages of ‘bottom-up’ approach. However, their proposed algorithm runs in exponential time, requires a database of proteins, and needs prior knowledge about PTM sites. In this paper, a new algorithm is proposed which can work without a protein database and can identify modifications in polynomial time. Besides, no prior knowledge about PTM sites is needed.

  • PDF

Salmonella Gallinarum 세포외막단백질의 프로테옴 분석 및 닭에서의 방어능 효과 (Proteomic Analysis and Protective Effects of Outer Membrane Proteins from Salmonella Gallinarum in Chickens)

  • 선지선;조영재;장주현;강정무;한장혁;한태욱
    • 한국축산식품학회지
    • /
    • 제33권2호
    • /
    • pp.281-286
    • /
    • 2013
  • Salmonella Gallinarum (SG) is known as an important pathogen that causes fowl typhoid in chickens. To investigate SG outer-membrane proteins (OMPs) as a vaccine candidate, we used proteomic mapping and database analysis techniques with extracted OMPs. Also, extracted OMPs were evaluated in several aspects to their safety, immune response in their host and protective effects. Our research has established a proteomic map and database of immunogenic SG-OMPs used as inactive vaccine against salmonellosis in chickens. A total of 22 spots were detected by 2-dimensional gel electrophoresis and immunogenic protein analysis. Eight spots were identified by Matrix-Assisted Laser Desorption/Ionization-Time of Flight-Mass spectrometry (MALDI-TOF-MS) and peptide mass fingerprinting (PMF) and categorized into four different types of proteins. Among these proteins, OmpA is considered to be an immunogenic protein and involved in the hosts' immune system. To estimate the minimum safety dose in chickens, 35 brown layers were immunized with various concentrations of OMPs, respectively. Consequently, all chickens immunized with more than a $50{\mu}g$ dose were protected against challenges. Moreover, intramuscular administration of OMPs to chickens was more effective compared to subcutaneous administration. These results suggest that the adjuvanted SG-OMP vaccine not only induces both the humoral and cellular immune response in the host but also highly protects the hosts' exposed to virulent SG with $50{\mu}g$ OMPs extracted by our method.

Retrieving Protein Domain Encoding DNA Sequences Automatically Through Database Cross-referencing

  • Choi, Yoon-Sup;Yang, Jae-Seong;Ryu, Sung-Ho;Kim, Sang-Uk
    • Bioinformatics and Biosystems
    • /
    • 제1권2호
    • /
    • pp.95-98
    • /
    • 2006
  • Recent proteomic studies of protein domains require high-throughput and systematic approaches. Since most experiments using protein domains, the modules of protein-protein interactions, require gene cloning, the first experimental step should be retrieving DNA sequences of domain encoding regions from databases. For a large scale proteomic research, however, it is a laborious task to extract a large number of domain sequences manually from several inter-linked databases. We present a new methodology to retrieve DNA sequences of domain encoding regions through automatic database cross-referencing. To extract protein domain encoding regions, it traverses several inter-connected database with validation process. And we applied this method to retrieve all the EGF domain encoding DNA sequences of homo sapiens. This new algorithm was implemented using Python library PAMIE, which enables to cross-reference across distinct databases automatically.

  • PDF

Proteomic Analysis of Drought Stress-Responsive Proteins in Rice Endosperm Affecting Grain Quality

  • Mushtaq, Roohi;Katiyar, Sanjay;Bennett, John
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.227-232
    • /
    • 2008
  • Drought stress is one of the major abiotic stresses in agriculture worldwide. We report here a proteomic approach to investigate the impact of post-fertilization drought on grain quality in rice seed endosperm (Oryza sativa cv. IR-64). Plants were stressed for 4 days at 3 days before heading. Total proteins of endosperm were extracted and separated by two-dimensional gel electrophoresis. Not many protein spots showed differential accumulation in drought-stressed samples. More than 400 protein spots were reproducibly detected, including three that were up-regulated and five down-regulated. Mass spectrometry analysis and database searching helped us to identify six spots representing different proteins. Functionally, the identified proteins were related to protein synthesis and carbohydrate metabolism, such as Granule-Bound Starch Synthase (GBSS, Wx protein), which is thought to play a very important role in starch biosynthesis and quality, a very crucial factor in determining rice grain quality.

  • PDF

Reinterpretation of the protein identification process for proteomics data

  • Kwon, Kyung-Hoon;Lee, Sang-Kwang;Cho, Kun;Park, Gun-Wook;Kang, Byeong-Soo;Park, Young-Mok
    • Interdisciplinary Bio Central
    • /
    • 제1권3호
    • /
    • pp.9.1-9.6
    • /
    • 2009
  • Introduction: In the mass spectrometry-based proteomics, biological samples are analyzed to identify proteins by mass spectrometer and database search. Database search is the process to select the best matches to the experimental mass spectra among the amino acid sequence database and we identify the protein as the matched sequence. The match score is defined to find the matches from the database and declare the highest scored hit as the most probable protein. According to the score definition, search result varies. In this study, the difference among search results of different search engines or different databases was investigated, in order to suggest a better way to identify more proteins with higher reliability. Materials and Methods: The protein extract of human mesenchymal stem cell was separated by several bands by one-dimensional electrophorysis. One-dimensional gel was excised one by one, digested by trypsin and analyzed by a mass spectrometer, FT LTQ. The tandem mass (MS/MS) spectra of peptide ions were applied to the database search of X!Tandem, Mascot and Sequest search engines with IPI human database and SwissProt database. The search result was filtered by several threshold probability values of the Trans-Proteomic Pipeline (TPP) of the Institute for Systems Biology. The analysis of the output which was generated from TPP was performed. Results and Discussion: For each MS/MS spectrum, the peptide sequences which were identified from different conditions such as search engines, threshold probability, and sequence database were compared. The main difference of peptide identification at high threshold probability was caused by not the difference of sequence database but the difference of the score. As the threshold probability decreases, the missed peptides appeared. Conversely, in the extremely high threshold level, we missed many true assignments. Conclusion and Prospects: The different identification result of the search engines was mainly caused by the different scoring algorithms. Usually in proteomics high-scored peptides are selected and low-scored peptides are discarded. Many of them are true negatives. By integrating the search results from different parameter and different search engines, the protein identification process can be improved.

Proteomic studies of putative molecular signatures for biological effects by Korean Red Ginseng

  • Lee, Yong Yook;Seo, Hwi Won;Kyung, Jong-Su;Hyun, Sun Hee;Han, Byung Cheol;Park, Songhee;So, Seung Ho;Lee, Seung Ho;Yi, Eugene C.
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.666-675
    • /
    • 2019
  • Background: Korean Red Ginseng (KRG) has been widely used as an herbal medicine to normalize and strengthen body functions. Although many researchers have focused on the biological effects of KRG, more studies on the action mechanism of red ginseng are still needed. Previously, we investigated the proteomic changes of the rat spleen while searching for molecular signatures and the action mechanism of KRG. The proteomic analysis revealed that differentially expressed proteins (DEPs) were involved in the increased immune response and phagocytosis. The aim of this study was to evaluate the biological activities of KRG, especially the immune-enhancing response of KRG. Methods: Rats were divided into 4 groups: 0 (control group), 500, 1000, and 2000 mg/kg administration of KRG powder for 6 weeks, respectively. Isobaric tags for relative and absolute quantitation was performed with Q-Exactive LC-MS/MS to compare associated proteins between the groups. The putative DEPs were identified by a current UniProt rat protein database search and by the Gene Ontology annotations. Results: The DEPs appear to increase the innate and acquired immunity as well as immune cell movement. These results suggest that KRG can stimulate immune responses. This analysis refined our targets of interest to include the potential functions of KRG. Furthermore, we validated the potential molecular targets of the functions, representatively LCN2, CRAMP, and HLA-DQB1, by Western blotting. Conclusion: These results may provide molecular signature candidates to elucidate the mechanisms of the immune response by KRG. Here, we demonstrate a strategy of tissue proteomics for the discovery of the molecular function of KRG.

산약(山藥)의 항산화 작용에 대한 단백질체 분석 연구 (Proteomic Approach to Study the Antioxidant Activities of Dioscoreae Rhizoma on HeLa Cells)

  • 양정민;이지형;성정석;김동일
    • 대한한방부인과학회지
    • /
    • 제21권2호
    • /
    • pp.108-124
    • /
    • 2008
  • Purpose: This study was examined to verify the anti-oxidative effect of Dioscoreae Rhizoma on HeLa cells by proteomic approach. Methods: Aqueous extract was used to treat HeLa cell with different concentrations treated with water or MeOH extract of Dioscoreae Rhizoma. HeLa cells were co-treated with $H_2O_2$ and Dioscoreae Rhizoma extracts. Proteomics was done to identify, characterize, and quantitate proteins expressed in HeLa cells treated by $H_2O_2$ and Dioscoreae Rhizoma. Results: When HeLa cells were Co-treated with $H_2O_2$ and Dioscoreae batatas extracts, 16 proteins identified by 2-DE and MALDI-TOF mass spectrometry and database search. PRDX, HSP27 was major proteins of antioxidant effect by Dioscoreae batatas. Conclusion: Our results suggest that Dioscoreae Rhizoma extracts induce antioxidant effects by regulating proteins such as PRDX, HSP27.

  • PDF

Tissue proteomics for cancer biomarker development - Laser microdissection and 2D-DIGE -

  • Kondo, Tadashi
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.626-634
    • /
    • 2008
  • Novel cancer biomarkers are required to achieve early diagnosis and optimized therapy for individual patients. Cancer is a disease of the genome, and tumor tissues are a rich source of cancer biomarkers as they contain the functional translation of the genome, namely the proteome. Investigation of the tumor tissue proteome allows the identification of proteomic signatures corresponding to clinico-pathological parameters, and individual proteins in such signatures will be good biomarker candidates. Tumor tissues are also a rich source for plasma biomarkers, because proteins released from tumor tissues may be more cancer specific than those from non-tumor cells. Two-dimensional difference gel electrophoresis (2D-DIGE) with novel ultra high sensitive fluorescent dyes (CyDye DIGE Fluor satulation dye) enables the efficient protein expression profiling of laser-microdissected tissue samples. The combined use of laser microdissection allows accurate proteomic profiling of specific cells in tumor tissues. To develop clinical applications using the identified biomarkers, collaboration between research scientists, clinicians and diagnostic companies is essential, particularly in the early phases of the biomarker development projects. The proteomics modalities currently available have the potential to lead to the development of clinical applications, and channeling the wealth of produced information towards concrete and specific clinical purposes is urgent.

hpvPDB: An Online Proteome Reserve for Human Papillomavirus

  • Kumar, Satish;Jena, Lingaraja;Daf, Sangeeta;Mohod, Kanchan;Goyal, Peyush;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.289-291
    • /
    • 2013
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The molecular understanding of HPV proteins has significant connotation for understanding their intrusion in the host and designing novel protein vaccines and anti-viral agents, etc. Genomic, proteomic, structural, and disease-related information on HPV is available on the web; yet, with trivial annotations and more so, it is not well customized for data analysis, host-pathogen interaction, strain-disease association, drug designing, and sequence analysis, etc. We attempted to design an online reserve with comprehensive information on HPV for the end users desiring the same. The Human Papillomavirus Proteome Database (hpvPDB) domiciles proteomic and genomic information on 150 HPV strains sequenced to date. Simultaneous easy expandability and retrieval of the strain-specific data, with a provision for sequence analysis and exploration potential of predicted structures, and easy access for curation and annotation through a range of search options at one platform are a few of its important features. Affluent information in this reserve could be of help for researchers involved in structural virology, cancer research, drug discovery, and vaccine design.