• Title/Summary/Keyword: proteolytic digestion

Search Result 49, Processing Time 0.022 seconds

Methods for improving meat protein digestibility in older adults

  • Seung Yun Lee;Ji Hyeop Kang;Da Young Lee;Jae Won Jeong;Jae Hyeon Kim;Sung Sil Moon;Sun Jin Hur
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.32-56
    • /
    • 2023
  • This review explores the factors that improve meat protein digestibility and applies the findings to the development of home meal replacements with improved protein digestion rates in older adults. Various methods improve the digestion rate of proteins, such as heat, ultrasound, high pressure, or pulse electric field. In addition, probiotics aid in protein digestion by improving the function of digestive organs and secreting enzymes. Plant-derived proteases, such as papain, bromelain, ficin, actinidin, or zingibain, can also improve the protein digestion rate; however, the digestion rate is dependent on the plant enzyme used and protein characteristics. Sous vide processing improves the rate and extent of protein digestibility, but the protein digestion rate decreases with increasing temperature and heating time. Ultrasound, high pressure, or pulsed electric field treatments degrade the protein structure and increase the proteolytic enzyme contact area to improve the protein digestion rate.

금속 이온을 이용한 Bacillus Stearothermophilus 호열성 단백질 분해효소의 역가 향상 및 호열 ${\cdot}$ 호기성 소화공정에의 응용

  • Kim, Yeong-Gi;Bae, Jin-Hye;Lee, Won-Hong;Choe, Jeong-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.167-170
    • /
    • 2000
  • Proteolytic hydrolysis is one of the main enzymatic reaction of waste activated sludge (WAS) digestion. Pretense excreted from Bacillus stearothermophilus (ATCC 31197) showed optimum temperature of $75^{\circ}C$ for maxium heat stable proteolytic activity against azo casein. The dependency of $Ca^{2+}$, $Zn^{2+}$ on heat stability of proteolytic enzymes were measured with various concentrations. It was shown that $Ca^{2+}$ ion enhanced heat stability of these enzymes. Then thermophilic aerobic digestion (TAD) was performed using B. sterothermophilus with the addition of divalent ions. Performance of TAD process with ATCC 31197 activated by $Ca^{2+}$, $Zn^{2+}$ions in terms of dissolved organic carbon (DOC) concentration, extracellular protein concentration, and scanning electrion microscopy (SEM) analysis. The best result of protein reduction concentration in digestion test was obtained with the addition of 2 mM $Ca^{2+}$ ion.

  • PDF

Study on the structure of cAMP receptor protein(CRP) by temperature change (온도변화에 의한 cAMP 수용성 단백질(CRP)의 구조)

  • 주종호;구미자;강종백
    • Journal of Life Science
    • /
    • v.10 no.3
    • /
    • pp.279-285
    • /
    • 2000
  • CRP (cyclic AMP receptor protein) regulate transcription of catabolite-sensitive genes in Escherichia coli. Wild-type and mutant CRP (S83G and S128A) proteins were used to measure the thermal stability and the temperature-dependent structural change by proteolytic digestion, UV spectrophotometer and CD spectrapolarimeter. The result indicated that wild-type CRP was more thermally stable than the mutant CRPs in the presence of cAMP. At a low temperature, wild-type CRP with cAMP was more sensitive to subtilisin than the mutant CRPs. At a high temperature, there was no difference of sensitivity to subtilisin among wild-type, S83G and S128A CRPs. CD spectra suggested that the secondary structure of CRP was destroyed partially at a high temperature.

  • PDF

Quality Control of Photosystem II during Photoinhibition

  • Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.55-58
    • /
    • 2002
  • The reaction center Dl protein of photosystem II is the target of photodamage by excess illumination. The Dl protein is damaged by reactive oxygen species generated by photochemical reactions and then degraded by specific proteolytic enzymes. We found that the Dl protein also cross-links with the surrounding polypeptides, such as D2 and CP43 in isolated thylakoids or photosystem II-enriched membranes from spinach under the illumination with strong visible light. The cross-linking was observed in spinach leaf discs as well when they were illuminated at higher temperature (40°C). It was also shown that the cross-linked products are digested efficiently by a protease(s) in the stroma. Thus the cross-linking/digestion processes of the Dl protein seem to comprise a new pathway in the turnover of the photodamaged Dl protein. It should be noted, however, that the cross-linked products of the Dl protein and CP43 induced by endogenous cationic radicals in the donor-side photoinhibition are resistant to proteolytic digestion. Accumulation of these cross-linked products in the thylakoids may lead to the decay of the function of chloroplasts and finally to the death of plant cells. Thus, we suggest that the quality control of photosystem II, especially removal of the cross-linked products of the Dl protein, is crucial for the survival of chloroplasts under the light stress.

  • PDF

Identification of protease-resistant proteins from allergenic nuts using two-dimensional gel electrophoresis and mass spectrometry

  • Santos, Ilyn L.;Lee, Ju-Young;Youm, Yujin;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.108-112
    • /
    • 2013
  • Nuts are one of the most common sources of allergies in individuals of all ages. In order for a particular protein to render an allergic reaction, it must resist proteolytic digestion by intestinal enzymes. In this study, three well-known allergenic nuts, almonds, cashew nuts, and peanuts, were used as samples, and enzyme digestion with Bacillus protease and porcine pepsin was tested. A proteomic approach using two-dimensional gel electrophoresis and an MS/MS analysis was applied to visualize and identify the proteins that were resistant to enzyme digestion. Among the 150 protein spots tested, 42 proteins were assigned functions. Due to the lack of genomic databases, 41% of the identified proteins were grouped as hypothetical. However, 12% of them were well-known allergens, including AraH. The remainder were grouped as storage, enzymes, and binding proteins.

  • PDF

Tryptic Digestion and Cytochalasin B Binding Assay of the Human HepG2-Type Glucose Transporter Expressed in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2005
  • The number of sites at which a protein can be readily cleaved by a proteolytic enzyme is greatly influenced by its three-dimensional structure. For native, properly-folded proteins both the rate of cleavage and number of sites at which cleavage takes place are usually much less than for the denatured protein. In order to compare the tertiary structure of recombinant HepG2 type glucose transporter with that of its native counterpart in the erythrocyte, the pattern of tryptic cleavage of the protein expressed in insect cell membranes was therefore examined. After 30 minutes digestion, a fragment of approximate Mr 19,000-21,000 was generated. In addition to this, there were two less intensely stained fragments of apparent Mr 28,000 and 17,000. The pattern of labelling was similar up to 2 hours of digestion. However, the fragments of Mr 19,000-21,000 and Mr 17,000 were no longer detectable after 4 hours digestion. The observation of a very similar pattern of fragments yielded by tryptic digestion of the HepG2 type transporter expressed in insect cells suggests that the recombinant protein exhibits a tertiary structure similar if not identical to that of its human counterpart. Also, the endogenous sugar transporter(s) present in Sf21 cells did not bind cytochalasin B, the potent transporter inhibitor. Therefore, the baculovirus/Spodoptera frugiperda (Sf) cell expression system could be very useful for production of large amounts of human glucose transporters, heterologously.

  • PDF

An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

  • Arul, Albert-Baskar;Han, Na-Young;Lee, Hookeun
    • Mass Spectrometry Letters
    • /
    • v.4 no.2
    • /
    • pp.25-29
    • /
    • 2013
  • Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution) method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.