• 제목/요약/키워드: protein-surfactant interactions

검색결과 3건 처리시간 0.04초

Electrophoretic Mobility to Monitor Protein-Surfacant Interactions

  • Hong, Soon-Taek
    • Preventive Nutrition and Food Science
    • /
    • 제3권2호
    • /
    • pp.143-151
    • /
    • 1998
  • Protein -surfactant interactions have been investigate by measuring ζ-potential of $\beta$-lactoglobulin-coated emulsion droplets and $\beta$-lactoglobulin in solution in the rpesenceof surfactant, with particular emphasis on the effect of protein heat treatment(7$0^{\circ}C$, 30min). When ionic surfactant (SDS or DATEM) is added to the protein solution, the ζ-potential of the mixture is found to increase with increasing surfactant concentration, indicating surfactant binding to the protein molecules. For heat-denatured protein,it has been observed that the ζ-potential tends to be lower than that of the native protein. The effect of surfactant on emulsions is rather complicated .With SDS, small amounts of surfactant addition induce a sharp increase in zeta potential arising from the specific interaction of surfactant with protein. With further surfacant addition, there is a gradual reductio in the ζ-potential, presumably caused by the displacement of adsorped protein (and protein-surfactant complex) from the emulsion droplet surfac by the excess of SDS molecules. At even higher surfactant concentrations, the measured zeta potential appears to increase slightly, possibly due to the formation of a surfactant measured zeta potential appears to increase slightly, possibly due to the formation of surfactant micellar structure at the oil droplet surface. This behaviour contrastswith the results of the corresponding systems containing the anionic emulsifier DATEM, in which the ζ-potential of the system is found to increase continuously with R, particularly at very low surfactant concentration. Overall, such behaviour is consisten with a combination of complexation and competitive displacement between surfactant and protein occurring at the oil-water interface. In addition, it has also been found that above the CMC, there is a time-dependent increase in the negative ζ-potential of emulsion droplets in solutions of SDS, possibly due to the solublization of oil droplets into surfactant micelles in the aqueous bulk phase.

  • PDF

Type II Cell 분리체로부터 Surfactant 인지질의 분비를 매개하는 신호변환 기전 (Signal Transduction Mechanisms Mediating Surfactant Phospholipid Secretion in Isolated Type II Cell)

  • 박성수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제43권2호
    • /
    • pp.123-127
    • /
    • 1996
  • Secretion of surfactant phospholipid can be stimulated by a variety of agonists acting via at least three different signal transduction mechanisms. These include the adenylate cyclase system with activation of cAMP-dependent protein kinase; activation of protein kinase C either directly or subsequent to activation of phosphoinositide-specific phospholipase C and generation of diacylglycerols and inositol trisphosphate; and a third mechanism that involves incresed $Ca^{2+}$ levels and a calmodulin-dependent step. ATP stimulates secretion via all three mechanisms. The protein kinase C pathway is also coupled to phopholipase D which, acting on relatively abundant cellular phospholipids, generates diacylglycerols that further activate protein kinase C. Sustained protein kinase C activation can maintain phosphatidylcholine secretion for a prolonged period of time. It is likely that interactions between the different signaling pathways have an important role in the overall physiological regulation of surfactant secretion.

  • PDF

역미셀을 이용한 Lysozyme 추출 최적조건 (Optimum Conditions of Lysozyme Extraction Using Reversed Micelles)

  • 전병수;김석규;윤성옥;송승구
    • KSBB Journal
    • /
    • 제14권6호
    • /
    • pp.661-664
    • /
    • 1999
  • Lysozyme 수용액으로부터 역미셀을 이용한 Lysozyme 추출공정에서 주요변수인 pH, 이온강도, AOT 농도, 추출시간 등을 실험을 통하여 연구하였으며, 미셀내의 수분함량과 lysozyme 농도는 비례관계임을 KCl 농도변화에 따른 결과로서 알 수 있었다. 본 연구에 사용된 lysozyme의 등전점이 약 11.2로 음이온 계면활성제를 사용할 경우 추출공정에 유리함을 알 수 있었고, 추출공정(forward extraction)에서의 최적조건은 pH 6-9일 때, 그리고 0.1 M 염농도와 50 mM이하의 AOT 농도에서 가장 높은 lysozyme 추출 효율을 얻을 수 있었다. 그리고 역추출(back extraction)에서는 pH 12이상, 1M 염농도에서 Lysozyme의 가장 높은 추출 효율을 나타내었다.

  • PDF