• Title/Summary/Keyword: protein turnover

Search Result 103, Processing Time 0.02 seconds

Molecular Analysis of Growth Factor and Clock Gene Expression in the Livers of Rats with Streptozotocin-Induced Diabetes

  • Kim, Joo-Heon;Shim, Cheol-Soo;Won, Jin-Young;Park, Young-Ji;Park, Soo-Kyoung;Kang, Jae-Seon;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.33 no.3
    • /
    • pp.163-169
    • /
    • 2009
  • Many biological systems are regulated by an intricate set of feedback loops that oscillate with a circadian rhythm of roughly 24 h. This circadian clock mediates an increase in body temperature, heart rate, blood pressure, and cortisol secretion early in the day. Recent studies have shown changes in the amplitude of the circadian clock in the hearts and livers of streptozotocin (STZ)-treated rats. It is therefore important to examine the relationships between circadian clock genes and growth factors and their effects on diabetic phenomena in animal models as well as in human patients. In this study, we sought to determine whether diurnal variation in organ development and the regulation of metabolism, including growth and development during the juvenile period in rats, exists as a mechanism for anticipating and responding to the environment. Also, we examined the relationship between changes in growth factor expression in the liver and clock-controlled protein synthesis and turnover, which are important in cellular growth. Specifically, we assessed the expression patterns of several clock genes, including Per1, Per2, Clock, Bmal1, Cry1 and Cry2 and growth factors such as insulin-like growth factor (IGF)-1 and -2 and transforming growth factor (TGF)-${\beta}1$ in rats with STZ-induced diabetes. Growth factor and clock gene expression in the liver at 1 week post-induction was clearly increased compared to the level in control rats. In contrast, the expression patterns of the genes were similar to those observed after 5 weeks in the STZ-treated rats. The increase in gene expression is likely a compensatory change in response to the obstruction of insulin function during the initial phase of induction. However, as the period of induction was extended, the expression of the compensatory genes decreased to the control level. This is likely the result of decreased insulin secretion due to the destruction of beta cells in the pancreas by STZ.

Effect of Ethanolic Extracts Mixed with Grains and Fallopia multiflora on Melanogenesis (곡물과 적하수오를 혼합한 에탄올 추출물이 멜라닌 합성에 미치는 영향)

  • Lee, Eunbeen;Kim, Moon-Moo
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.461-469
    • /
    • 2019
  • The aim of this study was to investigate the effect of a mixture of ethanol extracts of Black oryzasativa, Sesamum indicum, Oryza sativa, Rhynchosia Nulubilis, and Polygoni multiflori radix (MIXEE) on melanogenesis to develop a natural product for black hair growth. An accumulation of hydrogen peroxide ($H_2O_2$) in hair follicles, which reduces melanin synthesis, is responsible for hair graying. In the present study, MIXEE showed scavenging activity against DPPH radicals and reducing power. In addition, it reduced the cellular $H_2O_2$ level, indicating that it could inhibit oxidation and promote melanin synthesis, which was decreased by $H_2O_2$. On the other hand, it did not affect tyrosinase activity in vitro but promoted the turnover of L-DOPA into melanin. MIXEE promoted melanin synthesis at the cellular level in B16F1 cells. Furthermore, MIXEE increased the expression levels of superoxide dismutase 2 (SOD2) and SOD3 in western blot analysis. In addition, MIXEE increased the expression levels of tyrosinase-related protein (TRP)-2, which promoted melanin synthesis from L-DOPA. The results suggested that MIXEE could promote melanogenesis. Therefore, MIXEE may have potential as a natural product for promotion of melanin production and reversal of gray hair to black hair.

Construction and In vitro Study of a Prx 6/Luc Vector System for Screening Antioxidant Compounds in the Transgenic Mice (항산화반응을 유발하는 물질의 검색에 적용할 수 있는 형질전환 마우스 생산을 위한 새로운 Prx 6/Luc 벡터시스템의 제조 및 폐암세포주에서 반응성 확인)

  • Lee, Young Ju;Nam, So Hee;Kim, Ji Eun;Hwang, In Sik;Lee, Hye Ryun;Choi, Sun Il;Kwak, Moon Hwa;Lee, Jae Ho;Jung, Young Jin;An, Beum Soo;Hwang, Dae Youn
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.167-174
    • /
    • 2013
  • Peroxiredoxin 6 (Prx 6) is a member of the thiol-specific antioxidant protein family, which may play a role in protection against oxidative stress and in regulating phospholipid turnover. The aim of this study was to determine whether a human Prx 6/Luc vector was stably expressed and responded to antioxidants in a lung cell line (NCI-H460). To achieve this, the luciferase signal, hPrx 6 mRNA expression, and superoxide dismutase (SOD) activity were measured in transfectants with a hPrx 6/Luc plasmid after treatment with four antioxidant extracts, including Korea white ginseng (KWG), Korea red ginseng (KRG), Liriope platyphylla (LP), and red Liriope platyphylla (RLP). First, the hPrx 6/Luc plasmid was successfully constructed with DNA fragments of human Prx 6 promoter, amplified by PCR using genomic DNA isolated from NCI-H460 cells, and cloned into the pTransLucent reporter vector. The orientation and sequencing of the hPrx 6/Luc plasmid were identified with restriction enzyme and automatic sequencing. A luciferase assay revealed significant enhancement of luciferase activity in the four treatment groups compared with a vehicle-treated group, although the ratio of the increase was different within each group. The KRG- and LP-treated groups showed higher activity than the KWG- and RLP-treated groups. Furthermore, the luciferase activity against RLP occurred roughly in a dose-dependent manner. However, the level of endogenous hPrx 6 mRNA did not change in any group treated with the four extracts. The SOD activity was in agreement with the luciferase activity. Therefore, these results indicate that the hPrx 6/Luc vector system may successfully express and respond to antioxidant compounds in NCI-H460 cells. The data also suggest that the Prx 6/Luc vector system may be effectively applied in screening the response of hPrx 6 to antioxidant compounds in transgenic mice.