• Title/Summary/Keyword: protein synthesis

Search Result 1,832, Processing Time 0.037 seconds

Anti-wrinkle and Whitening Effects of Essential Oil from Abies koreana (Abies koreana 유래 정유의 항주름 및 미백 효과)

  • Song, Byeong-Wook;Song, Min-Jeong;Park, Mi-Jin;Choi, Don-Ha;Lee, Sung-Suk;Kim, Myungkil;Hwang, Ki-Chul;Kim, Il-Kwon
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.524-531
    • /
    • 2018
  • The essential oil from Abies koreana E.H. Wilson had been developed, however, its efficacy has not yet been studied especially in terms of skin care research. The aim of this study is to investigate the effects of Abies koreana extracts (AKE) on melanogenesis and wrinkle formation in B16F10 melanoma cells (B16F10) and human dermal fibroblast cell line (HDF). The essential oil was extracted by hydrodistillation method and purified by anhydrous sodium sulfate. At a concentration of $10^{-5}$-fold, viability in these cells had been defined by cytotoxicity assays. Anti-melanogenic effects on B16F10 were evaluated using tyrosinase inhibition assay, and real-time PCR for verifying gene expression of tyrosinase, tyrosinase related protein-1 and -2 (TRP-1 and -2). AKEs reduced about 5-fold of tyrosinase inhibitory activity compared to ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH)-induced group and about 30% reduction compared to Arbutin induced group. The mRNA levels of three melanin-related factors were increased, separately. To investigate the effects of anti-wrinkle, procollagen type I c peptide synthesis assay (PIP) and Western blot were performed. At AKE-treated group, PIP was up-regulated and the expression of collagen type 1 and matrix metalloproteinase (MMP)-1 were improved. Furthermore, AKE presented anti-wrinkle effects by increasing UVB-inhibited collagen type 1 expression, and reducing UVB-induced MMP-1 production at $60mJ/cm^2$ of UVB radiation. Therefore, Abies koreana extracts has potentials as a safe and an effective skin ingredient for whitening and anti-wrinkle.

The Effects of Prostaglandin and Dibutyryl cAMP on Osteoblastic Cell Activity and Osteoclast Generation (Prostaglandin과 Dibutyryl cAMP가 조골세포의 활성과 파골세포 형성에 미치는 영향)

  • Mok, Sung-Kyu;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.2
    • /
    • pp.448-468
    • /
    • 1996
  • To maintain its functional integrity, bone is continuously remodelled by a process involving resorption by osteoeclasts and formation by osteoblasts, In order to respond to changes in the physical environment or to trauma with the relevant action, this process is strictly regulated by locally synthesized or systemic fators, Prostaglandin $E_2(PGE_2$) is perhaps one of the best studied factors, having been known to affect bone cell function for several decades.$PGE_2$ has both anabolic and catabolic activities. Excess of $PGE_2$ has been implicated in a number of pathological states associated with bone loss in a number of chronic inflammatory conditions such as periodontal disease and rheumatoid arthritis. $PGE_2$ and other arachidonic acid metabolites have been shown to be potent stimulators of osteoclastic bone resorption in organ culture. The anabolic effects of $PGE_2$ were first noticed when an increase in periosteal woven bone formation was seen after the infusion of $PGE_2$ into infants in order to prevent closure of the ductus arteriosus. The cellular basis for the catabolic actions of $PGE_2$ has been well characterized. $PGE_2$increases osteoclast recruitment in bone marrow cell cultures. Also $PGE_2$ has a direct action on osteoclast serving to inhibit activity and can also indirectly activate osteoclast via other cells in the vicinity, presumably osteoblast. The cellular mechanisms for the anabolic actions of $PGE_2$ are not nearly so well understood. The purpose of this paper was to study the effects of $PGE_2$ and dibutyl(DB)cAMP on osteoblastic clone MC3T3El cells and on the generation of osteoclasts from their precursor cells. The effect of $PGE_2$ and DBcAMP on the induction of alkaline phoaphatase(AlP) was investigated in osteoblastic clone MC3T3El cells cultured in medium containing 0.4% fetal bovine serum. $PGE_2$ and DBcAMP stimulated ALP activity and MTT assay in the cells in a dose-dependent manner at concentrations of lO-SOOng/ml. Cycloheximide, protein synthesis inhibitor, inhibited the stimulative effect of $PGE_2$ and DBcAMP on ALP activity in the cells. $PGE_2$also increased the intracellular cAMP content in a dose-dependent fashion with a maximal effect at 500ng/ml. The effect of $PGE_2$ on the generation of osteoclasts was investigated in a coculture system of mouse bone marrow cells with primary osteoblastic cells cultured in media containing 10% fetal bovine serum.After cultures, staining for tartrate-resistant acid phosphatase(TRAP)-marker enzyme of osteoclast was performed. The TRAP(+) multinucleated cells(MNCs), which have 3 or more nuclei, were counted. More TRAP(+) MNCs were formed in coculture system than in control group. $PGE_2(10^{-5}10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in culture. $PGE_2(10^{-6}M)$ stimulated the formation of osteoclast cells from mouse bone marrow cells in coculture of osteoblastic clone MC3T3E1 cells This results suggest that $PGE_2$ stimulates the differentiation of osteoblasts and generation of osteoclast, and are involved in bone formation, as well as in bone resorption.

  • PDF

Superoxide Dismutase Gene Expression Induced by Lipopolysaccharide in Alveolar Macrophage of Rat (폐포대식세포에서 내독소 자극에 의한 Superoxide Dismutase 유전자발현의 조절 기전)

  • Park, Kye-Young;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Hyun, In-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.4
    • /
    • pp.522-534
    • /
    • 1995
  • Background: In the pathogenesis of acute lung injury induced by lipopolysaccharide(LPS), oxygen radiclls are known to be involved in one part. Superoxide dismutase(SOD) protects oxygen radical-induced tissue damage by dismutating superoxide to hydrogen peroxide. In eukaryotic cells, two forms of SOD exist intracellularly as a cytosolic, dimeric copper/zinc-containing SOD(CuZnSOD) and a mitochondrial, tetrameric manganese-containing SOD(MnSOD). But there has been little information about SOD gene expression and its regulation in pulmonary alveolar macrophages(PAMs). The objective of this study is to evaluate the SOD gene expression induced by LPS and its regulation in PAMs of rat. Method: In Sprague-Dawley rats, PAMs obtained by broncholaveolar lavage were purified by adherence to plastic plate. To study the effect of LPS on the SOD gene expression of PAMs, they were stimulated with different doses of LPS($0.01{\mu}g/ml{\sim}10{\mu}g/ml$) and for different intervals(0, 2, 4, 8, 24hrs). Also for evaluating the level of SOD gene regulation actinomycin D(AD) or cycloheximide(CHX) were added respectively. To assess whether LPS altered SOD mRNA stability, the rate of mRNA decay was determined in control group and LPS-treated group. Total cellular RNA extraction by guanidinium thiocyanate/phenolfchlorofonn method and Northern blot analysis by using a $^{32}P$-labelled rat MnSOD and CuZnSOD cDNAs were performed. Results: The expression of mRNA in MnSOD increased dose-dependently, but not in CuZnSOD. MnSOD mRNA expression peaked at 8 hours after LPS treatment. Upregulation of MnSOD mRNA expression induced by LPS was suppressed by adding AD or CHX respectively. MnSOD mRNA stability was not altered by LPS. Conclusion: These findings show that PAMs of rat could be an important source of SOD in response to LPS, and suggest that their MnSOD mRNA expression may be regulated transcriptionally and require de novo protein synthesis without affecting mRNA stability.

  • PDF

The Role of MnSOD in the Mechanisms of Acquired Resistance to TNF (TNF에 대한 내성획득에서 MnSOD의 역할에 관한 연구)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1353-1365
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF -resistance in TNF-$\alpha$ cDNA transfected cancer cells would be. an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate the role of MnSOD, an antioxidant enzyme, in the acquired resistance to TNF of TNF-$\alpha$ cDN A transfected cancer cells. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, ELISA, MIT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and the changes of MnSOD mRNA expressions with Northern blot analysis. Results : The MnSOD mRNA expressions of parental cells and genetically modified cells of WEHI164 and ME180 cells(both are naturally TNF sensitive) were not significantly different The MnSOD mRNA expressions of genetically modified cells of NCI-H2058 and A549(both are naturally TNF resistant) were higher than those of the parental cells, while those of parental cells with exogenous TNF were also elevated. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the MnSOD expression, but the difference in natural TNF sensitivity of each cell may be associated with the level of the MnSOD expression.

  • PDF

Mineral Contents and Physiological Activities of Dried Sea Tangle (Laminaria japonica) Collected from Gijang and Wando in Korea. (기장산과 완도산 건 다시마의 무기성분 및 생리활성 분석)

  • Choi, Jae-Suk;Shin, Su-Hwa;Ha, Yu-Mi;Kim, Yang-Chun;Kim, Tae-Bong;Park, Sun-Mee;Choi, In-Soon;Song, Hyo-Ju;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.18 no.4
    • /
    • pp.474-481
    • /
    • 2008
  • This research was performed to determine the proximate compositions, mineral contents, alginic acid, antioxidative activities and amino acids of sea tangles collected from Gijang and Wando area. Crude protein and ash contents were higher in Gijang sea tangle, whereas carbohydrate and moisture were higher in Wando in general. Mineral contents of Gijang sea tangle were higher than Wando. Especially, Na and K was the most abundant in both Gijang and Wando sea tangles. Alginic acid content was almost similar in both sea tangles. The major free amino acids were glutamic acid, aspartic acid, alanine, proline and hydroxyproline in both Gijang and Wando sea tangles. Antioxidative activity of methanol extract of sea tangle was measured by using DPPH radical scavenging and SOD-like activity. DPPH radical scavenging and SOD-like activity were about 17% ($40\;{\mu}g/ml$) and 7% ($5\;{\mu}g/ml$) higher, respectively, in Wando sea tangle. When stimulate the macrophages RAW264.7 cells with lipopolysaccharide (LPS), inhibition of NO synthesis of the methanol extract was 11% higher in Wando sea tangle comparing with Gijang samples.

Protective Effect of Enzymatically Modified Stevia on C2C12 Cell-based Model of Dexamethasone-induced Muscle Atrophy (덱사메타손으로 유도된 근위축 C2C12 모델에서 효소처리스테비아의 보호 효과)

  • Geon Oh;Sun-Il Choi;Xionggao Han;Xiao Men;Se-Jeong Lee;Ji-Hyun Im;Ho-Seong Lee;Hyeong-Dong Jung;Moon Jin La;Min Hee Kwon;Ok-Hwan Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.2
    • /
    • pp.69-78
    • /
    • 2023
  • This study aimed to investigate the protective effect of enzymatically modified stevia (EMS) on C2C12 cell-based model of dexamethasone (DEX)-induced muscle atrophy to provide baseline data for utilizing EMS in functional health products. C2C12 cells with DEX-induced muscle atrophy were treated with EMS (10, 50, and 100 ㎍/mL) for 24 h. C2C12 cells were treated with EMS and DEX to test their effects on cell viability and myotube formation (myotube diameter and fusion index), and analyze the expression of muscle strengthening or degrading protein markers. Schisandra chinensis Extract, a common functional ingredient, was used as a positive control. EMS did not show any cytotoxic effect at all treatment concentrations. Moreover, it exerted protective effects on C2C12 cell-based model of DEX-induced muscle atrophy at all concentrations. In addition, the positive effect of EMS on myotube formation was confirmed based on the measurement and comparison of the fusion index and myotube diameter when compared with myotubes treated with DEX alone. EMS treatment reduced the expression of muscle cell degradation-related proteins Fbx32 and MuRF1, and increased the expression of muscle strengthening and synthesis related proteins SIRT1 and pAkt/Akt. Thus, EMS is a potential ingredient for developing functional health foods and should be further evaluated in preclinical models.

Anti-wrinkle effects of solvent fractions from Jubak on CCD-986sk (CCD-986sk 세포 내 주박 분획물의 항주름 효능)

  • Young-Ah Jang;Hyejeong Lee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.508-519
    • /
    • 2024
  • In this study, in order to evaluate the possibility of using Jubak as a functional cosmetic material, evaluation of antioxidant activity according to fractions and anti-wrinkle efficacy in CCD-986sk cells, a human fibroblast, were conducted. As a result of confirming the antioxidant activity by measuring ABTS+ radical scavenging ability, Jubak's Ethyl Acetate fractions was found to be 75.5% at a concentration of 1,000 ㎍/ml, showing the highest antioxidant activity among the extraction solvents. The wrinkle improvement effect was confirmed by measuring the inhibitory activity of elastase and collagenase, and in both test results, Jubak's Ethyl Acetate fractions showed the highest efficacy at a concentration of 1,000 ㎍/ml. As a result of measuring the synthesis rate of pro-collagen type I in CCD-986sk cells induced by UVB, Jubak showed the highest efficacy in the order of Ethyl Acetate, Water, Acetonitrile, and Hexan fractions at the same concentration of 20 ㎍/ml. As a result of measuring the inhibition rate of MMP-1, a collagen degrading enzyme, all four solvent fractions showed an efficacy of more than 70% at 20 ㎍/ml. As a result of measuring the mRNA expression levels of pro-collagen type I, MMP-1, and MMP-3 in a real-time PCR experiment, the protein expression level of pro-collagen type I increased when treated with Jubak fractions compared to the UVB group alone. The mRNA expression levels of MMP-1 and MMP-3 were confirmed to be decreased, and Ethyl Acetate fractions was the most effective in improving wrinkles after the control group (EGCG). As a result, it was confirmed that the Ethyl Acetate fractions among Jubak's solvent fractions has an anti-wrinkle effect against photoaging caused by UVB stimulation, and is expected to be used as a natural material for cosmetics.

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Lipopolysaccharide-induced Synthesis of IL-1beta, IL-6, TNF-alpha and TGF-beta by Peripheral Blood Mononuclear Cells (내독소에 의한 말초혈액 단핵구의 IL-1beta, IL-6, TNF-alpha와 TGF-beta 생성에 관한 연구)

  • Jung, Sung-Hwan;Park, Choon-Sik;Kim, Mi-Ho;Kim, Eun-Young;Chang, Hun-Soo;Ki, Shin-Young;Uh, Soo-Taek;Moon, Seung-Hyuk;Kim, Yang-Hoon;Lee, Hi-Bal
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.4
    • /
    • pp.846-860
    • /
    • 1998
  • Background: Endotoxin (LPS : lipopolysaccharide), a potent activator of immune system, can induce acute and chronic inflammation through the production of cytokines by a variety of cells, such as monocytes, endothelial cells, lymphocytes, eosinophils, neutrophils and fibroblasts. LPS stimulate the mononucelar cells by two different pathway, the CD14 dependent and independent way, of which the former has been well documented, but not the latter. LPS binds to the LPS-binding protein (LBP), in serum, to make the LPS-LBP complex which interacts with CD14 molecules on the mononuclear cell surface in peripheral blood or is transported to the tissues. In case of high concentration of LPS, LPS can stimulate directly the macrophages without LBP. We investigated to detect the generation of proinflammatory cytokines such as interleukin 1 (IL-1), IL-6 and TNF-$\alpha$ and fibrogenic cytokine, TGF-$\beta$, by peripheral blood mononuclear cells (PBMC) after LPS stimulation under serum-free conditions, which lacks LBPs. Methods : PBMC were obtained by centrifugation on Ficoll Hypaque solution of peripheral venous bloods from healthy normal subjects, then stimulated in the presence of LPS (0.1 ${\mu}g/mL$ to 100 ${\mu}g/mL$ ). The activities of IL-1, IL-6, TNF, and TGF-$\beta$ were measured by bioassaies using cytokines - dependent proliferating or inhibiting cell lines. The cellular sources producing the cytokines was investigated by immunohistochemical stains and in situ hybridization. Results : PBMC started to produce IL-6, TNF-$\alpha$ and TGF-$\beta$ in 1 hr, 4 hrs and 8hrs, respectively, after LPS stimulation. The production of IL-6, TNF-$\alpha$ and TGF-$\beta$ continuously increased 96 hrs after stimulation of LPS. The amount of production was 19.8 ng/ml of IL-6 by $10^5$ PBMC, 4.1 ng/mL of TNF by $10^6$ PBMC and 34.4 pg/mL of TGF-$\beta$ by $2{\times}10^6$ PBMC. The immunoreactivity to IL-6, TNF-$\alpha$ and TGF-$\beta$ were detected on monocytes in LPS-stimulated PBMC. Some of lymphocytes showed positive immunoreactivity to TGF-$\beta$. Double immunohistochemical stain showed that IL-1$\beta$, IL-6, TNF-$\alpha$ expression was not associated with CD14 postivity on monocytes. IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$mRNA expression were same as observed in immunoreactivity for each cytokines. Conclusion: When monocytes are stimulated with LPS under serum-free conditions, IL-6 and TNF-$\alpha$ are secreted in early stage of inflammation. In contrast, the secretion of TGF-$\beta$ arise in the late stages and that is maintained after 96 hrs. The main cells releasing IL-1$\beta$, IL-6, TNF-$\alpha$ and TGF-$\beta$ are monocytes, but also lymphocytes can secret TGF-$\beta$.

  • PDF

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF