• Title/Summary/Keyword: protein synthesis

Search Result 1,839, Processing Time 0.027 seconds

Transcriptome analysis revealed regulatory mechanisms of light and culture density on free-living sporangial filaments of Neopyropia yezoensis (Rhodophyta)

  • Bangxiang He;Zhenbin Zheng;Jianfeng Niu;Xiujun Xie;Guangce Wang
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.283-294
    • /
    • 2023
  • Previous research indicated that free-living sporangial filament keep hollow morph under high-culture density and form bipartite cells under low-culture density, while the following conchospore release was inhibited by high light. Here, we further explored the molecular bases of these affects caused by light and culture density using a transcriptome analysis. Many differentially expressed genes (DEGs) related to carbon dioxide concentration and fixation, photosynthesis, chlorophyll synthesis and nitrogen absorption were upregulated under high-light conditions compared with low-light conditions, indicating the molecular basis of rapid vegetative growth under the former. The stress response- and ion transport-related DEGs, as well as the gene encoding the vacuole formation-brefeldin A-inhibited guanine nucleotide exchange protein (BIG, py05721), were highly expressed under high-density conditions, indicating the molecular basis of the hollow morph of free-living sporangial filaments under high-culture density conditions. Additionally, the brefeldin A treatment indicated that the hollow morph was directly influenced by vacuole formation-related vesicle traffic. Others DEGs related to cell wall components, zinc-finger proteins, ASPO1527, cell cycle and cytoskeleton were highly expressed in the low density with low-light group, which might be related to the formation and release of conchospores. These results provide a deeper understanding of sporangial filaments in Neopyropia yezoensis and related species.

The Anti-Obesity Activity of Syzygium aromaticum L. in High-Fat Diet-induced Obese Mice (고지방식이로 유도된 비만 마우스에서 정향(丁香)의 항비만 효과)

  • Hui Yeon An;Seong-Soo Roh;Mi-Rae Shin
    • The Korea Journal of Herbology
    • /
    • v.39 no.1
    • /
    • pp.11-21
    • /
    • 2024
  • Objectives : This study aims to analyze the anti-obesity effect of Syzygium aromaticum L. (SA) in obese mice made by a 60% high-fat diet (HFD). Methods : The antioxidant activities of SA were evaluated in vitro. To assess the anti-obesity effect of SA, male C57BL/6 mice were divided into five groups: Normal, Control, GC100 (Garcinia cambogia 100 mg/kg/day), SA100 (SA 100 mg/kg/day), SA200 (SA 200 mg/kg/day). All groups underwent a 6-week regimen of HFD and oral administration, except for the Normal group. Subsequently, we performed blood analysis, western blotting, and histopathological staining. Results : SA demonstrated effectiveness in antioxidant measurements. SA treatment resulted in a significant decrease in body weight gain, along with reductions in liver and epididymal fat weights. Serum triglyceride (TG), total cholesterol (TC), glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), and leptin levels were reduced with SA treatment. Moreover, in the SA100 group, the reduction of both TG and TC synthesis was caused by inhibiting the sterol regulatory element-binding transcription factor 1 (SREBP-1) and sterol regulatory element-binding transcription factor 2 (SREBP-2) through the Sirtuin 1 (Sirt1)/phospho-AMP-activated protein kinase (p-AMPK) pathway. Furthermore, SA treatment at a dose of 100 mg/kg reduced the accumulation of lipid droplets in the liver and the adipocyte size of the epididymal fat. Conclusion : Our research reveals the anti-obesity effects of SA by demonstrating its ability to inhibit body weight gain and lipid accumulation, suggesting that SA might be promising for obesity treatment.

Physiological and transcriptome analysis of acclimatory response to cold stress in marine red alga Pyropia yezoensis

  • Li-Hong Ma;Lin Tian;Yu-Qing Wang;Cong-Ying Xie;Guo-Ying Du
    • ALGAE
    • /
    • v.39 no.1
    • /
    • pp.17-30
    • /
    • 2024
  • Red macroalga Pyropia yezoensis is a high valuable cultivated marine crop. Its acclimation to cold stress is especially important for long cultivation period across winter in coasts of warm temperate zone in East Asia. In this study, the response of P. yezoensis thalli to low temperature was analyzed on physiology and transcriptome level, to explore its acclimation mechanism to cold stress. The results showed that the practical photosynthesis activity (indicated by ΦPSII and qP) was depressed and pigment allophycocyanin content was decreased during the cold stress of 48 h. However, the Fv/Fm and non-photochemical quenching increased significantly after 24 h, and the average growth rate of thalli also rebounded from 24 to 48 h, indicating a certain extent of acclimation to cold stress. On transcriptionally, the low temperature promoted the expression of differentially expressed genes (DEGs) related to carbohydrate metabolism and energy metabolism, while genes related to photosynthetic system were depressed. The increased expression of DEGs involved in ribosomal biogenesis and lipid metabolism which could accelerate protein synthesis and enhance the degree of fatty acid unsaturation, might help P. yezoensis thallus cells to cope with cold stress. Further co-expression network analysis revealed differential expression trends along with stress time, and corresponding hub genes play important roles in the systemic acquired acclimation to cold stress. This study provides basic mechanisms of P. yezoensis acclimation to cold temperature and may aid in exploration of functional genes for genetic breeding of economic macroalgae.

Clinical Phenotypes and Dietary Management of Hepatic Glycogen Storage Disease Type 0 (간 0형 당원축적병의 임상 표현형과 식사관리)

  • Young-Lim Shin
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.23 no.2
    • /
    • pp.8-14
    • /
    • 2023
  • The hepatic glycogen storage disease type 0 (GSD type 0) is an autosomal recessive disorder caused by a deficiency of hepatic glycogen synthase encoded by the glycogen synthase 2 (GYS2) gene, leading to abnormal synthesis glycogen. The clinical findings of GSD type 0 are hyperketotic hypoglycemia at fasting state and accompanying postprandial hyperglycemia and hyperlactatemia. GSD type 0 has only been reported in a very small number so far, and the diagnosis is likely to be missed because symptoms are mild, severe hypoglycemia is rare or asymptomatic, or symptoms gradually disappear with age. Essential management strategies include feeding high-protein meals to stimulate gluconeogenesis, frequent meals to prevent hypoglycemia during the day and feeding complex carbohydrates such as uncooked cornstarch to slowly release glucose during nignt. GSD type 0 has a good prognosis, with appropriate treatment, normal growth can be achieved and no complications occur. Significant hypoglycemia occurs less common in adulthood, but ongoing dietary management may be necessary.

  • PDF

Anti-photoaging and anti-oxidative activities of natural killer cell conditioned medium following UV-B irradiation of human dermal fibroblasts and a reconstructed skin model

  • Sung‑Eun Lee;Tae‑Rin Kwon;Jong Hwan Kim;Byung‑Chul Lee;Chang Taek Oh;Minju Im;Kyeong Hwang;Sang Hoon Paik;Seungryel Han;Jeom‑Yong Kim;Beom Joon Kim
    • International Journal of Molecular Medicine
    • /
    • v.44 no.5
    • /
    • pp.1641-1652
    • /
    • 2019
  • Conditioned media from various sources comprise numerous growth factors and cytokines and are known to promote the regeneration of damaged tissues. Among these, natural killer cell conditioned medium (NK-CdM) has been shown to stimulate collagen synthesis and the migration of fibroblasts during the wound healing process. With a long-term aim of developing a treatment for skin photoaging, the ability of NK-CdM to prevent ultraviolet-B (UV-B) damage was assessed in neonatal human dermal fibroblasts (NHDFs) and an in vitro reconstructed skin model. The factors present in NK-CdM were profiled using an antibody array analysis. Protein and mRNA levels in UV-B exposed NHDFs treated with NK-CdM were measured by western blotting and quantitative reverse transcription-PCR, respectively. The total antioxidant capacity of NK-CdM was determined to assess its ability to suppress reactive oxygen species. The anti-photoaging effect of NK-CdM was also assessed in a 3D reconstituted human full skin model. NK-CdM induced proliferation of UV-B-treated NHDFs, increased procollagen expression, and decreased matrix metalloproteinase (MMP)-1 expression. NK-CdM also exhibited a potent antioxidant activity as measured by the total antioxidant capacity. NK-CdM inhibited UV-B-induced collagen degradation by inactivating MAPK signaling. NK-CdM also elicited potential anti-wrinkle effects by inhibiting the UV-B-induced increase in MMP-1 expression levels in a 3D reconstituted human full skin model. Taken together, the suppression of both UV-B-induced MMP-1 expression and JNK activation by NK-CdM suggests NK-CdM as a possible candidate anti-skin aging agent.

Zinc dietary reference intakes and factorial analysis (아연 섭취 기준량 설정과 요인가산법)

  • Young-Eun Cho;Mi-Kyung Lee;Jae-Hee Kwon;In-Sook Kwun
    • Journal of Nutrition and Health
    • /
    • v.57 no.4
    • /
    • pp.365-375
    • /
    • 2024
  • Purpose: Zinc is involved in regulating homeostasis and metabolism in the body, and understanding these processes is important for estimating intake requirements. This review aimed to assist in setting the standards for Dietary Reference Intakes for Koreans (KDRIs, 2025) for zinc by examining specific factors associated with role of zinc in the body and using the factorial analysis method. Methods: We reviewed the zinc-specific factors that should be considered when setting the required zinc intake to maintain zinc homeostasis in the body and used the factorial analysis method for estimating zinc requirements for different population groups. Results: Factorial analysis involves estimating the required intake based on various factors that affect zinc metabolism and requirements. The key components and steps involved in determining the zinc dietary reference intake (DRI), particularly the estimated average requirement (EAR), include: 1) Estimating basal requirements, which involves calculating the amount of zinc needed to replace natural losses through the intestinal (feces) and non-intestinal (urine, skin and other body secretions) routes, 2) Accounting for the various biomarkers related to metabolic functions of zinc, 3) Considering physiological requirements for zinc, such as those for growth, development, pregnancy, and lactation since zinc is essential for DNA and protein synthesis, and 4) Estimating the dietary absorption rate of zinc. Conclusion: The factorial analysis for zinc requirement is based on scientific evidence and is tailored to meet the requirements of different population groups, ensuring optimal health and preventing deficiency. It includes considerations of physiological needs, dietary absorption, and population-specific characteristics.

EFFECTS OF SUBSTANCE P ON COLLAGEN PRODUCTION IN HUMAN PERIODONTAL LIGAMENT CELLS (치주인대 세포의 교원질 생성에 대한 Substance P의 효과)

  • CHUN, Jun-Yeung;Choi, Je-Yong;Kyung, Hee-Moon;Sung, Jae-Hyun
    • The korean journal of orthodontics
    • /
    • v.26 no.1 s.54
    • /
    • pp.83-94
    • /
    • 1996
  • Substance P is one of the neuropeptide which presents highly in tension site of periodontal ligament during the orthodontic tooth movement. It has bnn also hon as one of the neuropeptides which cause neurogenic inflammation in various tissues and organs. However, there is no report about the effect of substance P on major extracellular matrix protein, collagen production. The purpose of this study was to evaluate the collagen production by substance P in human periodontal ligament cell. The collagenase-digestion method was used to evaluate collagen production and also used Northern blot hybridization for the evaluation of collagen mRNA level. This study also Included in terms of prostanglandins and gelatinase production with respect to collagen production. For the collagen degradation, zymography was used to estimate denatured collagen degradation. Dose-dependent effect of substance P on noncollagen protein, collagen, and percent collagen was that substance P increased noncollagen protein synthesis, but decreased collagen sytnsis. So the percent collagen, which determined by relative collagen production against total protein production, w3s decreased from $7\%\;to\;3.6\%$. This inhibitory effect of substance P on collagen production was disappeared when cells were treated concomitantly with indomethacin. It means that substance P-induced inhibitory effect on collagen production was due at least in part to the production of prostaglandins. To evaluate whether substance P-induced inhibitory effect on collagen production is correspond to the steady-state levels of procollagen mRNA, Northern blot hybridization was performed and it showed that substance P has no effect on the steady-slate level of ${\alpha}1(I)$ procollagen mRNA. It means that the inhibitory effect of substance P on collagen production was due to the change of a certain mechanism after posttranscription. In this context, gelatinase production by substance P in periodontal ligament cells was evaluated by zymography. Zymogram showed that substance P has no effect on gelatinase production in periodontal ligament cells. To explore wheter substance P-induced inhibitory effect on collagen production is selevtive in periodontal ligament cells or not, MC3T3-E1 cells which originated from mouse calvaria was used. It showed that substance P has no effect on collagen production in MC3T3-E1 cells. Taken together, substance P inhibits collagen production in human periodontal ligament cells. This effect was not due to the change of the steady-state level of procollagen mRNA and gelatinase production, but due at least in part to the change of prostaglandins production.

  • PDF

A study of Association of the H-FABP RFLP with Economic Traits of Pigs (돼지 H-FABP 유전자의 다형성 및 경제 형질과의 연관성 구명)

  • Choi, B.H.;Kim, T.H.;Lee, J.W.;Cho, Y.M.;Lee, H.Y.;Cho, B.W.;Cheong, I.C.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.703-710
    • /
    • 2003
  • The purpose of this study was to detect association between genetic variation and economic trait in the porcine heart type fatty acid-binding protein gene as a candidate gene for the traits related with growth and meat quality in pigs. The H-FABP is a 15-kDa protein expressed in several tissues with high demand for fat metabolism such as cardiac and skeletal muscle and lactating mammary gland. H-FABP is small intracellular protein involved in fatty acid transport from the plasma membrane to the site of $\beta$-oxidation and/or triacylglycerol or phospholipid synthesis. In this study, H-FABP PCR-RFLP was performed in F$_2$ population composed of 214 individuals from an intercross between Korean Native Boars and Landrace sows. PCR products from two primer sets within H-FABP gene were amplified in 850bp and 700bp. Digestion of PCR products with the restriction digestion enzymes HaeⅢ and HinfⅠ, revealed fragment length polymorphisms(RFLPs). The genotype frequencies from H-FABP/HaeⅢ was .29 for genotype DD, .53 for genotype Dd, and .15 for genotype dd, respectively. The genotype frequencies of HH, Hh, and hh from H-FABP/HinfⅠ was .38, .41 and .20, respectively, in the population. Relationships between their genotypes and economic traits were estimated. In H-FABP/HaeⅢ locus, there were specific genotypes(Dd and dd) associated with economic traits such as body weights at 3, 5, 12, and 30 week of age (p〈.05 to .001). The ‘d’ allele was associated with gaining of body weight. In H-FABP/HinfⅠ locus, Genotypes of HH and Hh associated with growth traits such as body weights at 5, 12, and 30 week of age (p〈.05 or p〈.001) and back fat thickness, body fat including abdominal and trimmed fat (p〈.001) and intramuscular fat(p〈.05) The ‘H’ allele was positively associated with gaining of body weight and fatness deposition. In conclusion, a significant association of the H-FABP gene from its genetic variation was found on body weight, intramuscular fat and backfat thickness.

Radiation Adaptive Response Induced by I-131 Therapy in Patients with Differentiated Thyroid Cancer (분화 갑상선암 환자에서 I-131 치료에 의해 유도되는 방사선적응반응)

  • Li, Ming-Hao;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.2
    • /
    • pp.83-88
    • /
    • 2001
  • Purpose: The purpose of this study was to ascertain whether radiation adaptive response could be induced by high dose I-131 therapy in patients with differentiated thyroid cancer. Materials and Methods: Lymphocytes from 21 patients (7 males, 14 females, mean age $55{\pm}12$ years) were collected before and after administration of 5,550 MBq (150 mCi) I-131. They were exposed to a challenge dose of 1 Gy gamma rays using a Cs-137 cell irradiator. The number of ring-form (R) and dicentric (D) chromosomes was counted under the light microscope, and used to calculate the frequency of chromosomal aberration. Ydr, which was defined as the sum of R and D divided by the total number of counted lymphocytes. Results: Ydr in patients before I-131 therapy ($0.09{\pm}0.01$) was not different from that of controls ($0.08{\pm}0.01$). Ydr was significantly increased to $0.13{\pm}0.02$ (p<0.0001) after I-131 therapy. Increase of Ydr after the challenge irradiation of 1 Gy was significantly lower in patients after I-131 therapy than before I-131 therapy ($0.17{\pm}0.03\;vs\;0.21{\pm}0.02$, p<0.0001). Cycloheximide (CHM), an inhibitor of protein synthesis, abolished this effect. Ydr after CHM ($0.20{\pm}0.01$) was significantly higher than Ydr after I-131 therapy ($0.17{\pm}0.03$, p<0.0001), but was not different from Ydr before I-131 therapy ($0.21{\pm}0.02$).Conclusion: High dose I-131 therapy induces an adaptive response in peripheral lymphocytes of patients with well-differentiated thyroid cancer, which is associated with protein synthesis.

  • PDF

Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진)

  • Kim Soo-Youn;Choi Gang Guk;Park Youn Il;Park Young Mok;Yang Young Ki;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.