Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.
Proceedings of the Korean Biophysical Society Conference
/
2002.06b
/
pp.13-13
/
2002
기계학습(maching learning)은 경험을 통한 테이터 관측으로부터 스스로 성능을 향상할 수 있는 컴퓨터를 연구하는 인공지능(artificial intelligence)의 한 연구분야이다. 최근 들어 기계학습은 Bioinformatics 분야에서 생명과학 데이터마이닝을 위한 하나의 핵심기술로 부상하고 있다.(중략)
Journal of the Korea Institute of Information and Communication Engineering
/
v.19
no.12
/
pp.3011-3016
/
2015
Representing protein three-dimensional structure by concatenating a sequence of protein fragments gives an efficient application in analysis, modeling, search, and prediction of protein structures. This paper investigated the effective combination of distance measures, which can exploit large protein structure database, in order to construct a protein fragment library representing native protein structures accurately. Clustering method was used to construct a protein fragment library. Initial clustering stage used inter alpha-carbon distance having low time complexity, and cluster extension stage used the combination of inter alpha-carbon distance, Binet-Cauchy distance, and root mean square deviation. Protein fragment library was constructed by leveraging large protein structure database using the proposed combination of distance measures. This library gives low root mean square deviation in the experiments representing protein structures with protein fragments.
Predicting protein loop structures is an important modeling problem since protein loops are often involved in diverse biological functions by participating in enzyme active sites, ligand binding sites, etc. However, loop structure prediction is difficult even when structures of homologous proteins are known due to large sequence and structure variability among loops of homologous proteins. Therefore, an ab initio approach is necessary to solve loop modeling problems. One of the difficulties in the development of ab initio loop modeling method is to derive an accurate scoring function that closely approximates the true free energy function. In particular, entropy as well as energy contribution have to be considered adequately for loops because loops tend to be flexible compared to other parts of protein. In this study, the contribution of conformational entropy is considered in scoring loop conformations by employing "colony energy" which was previously proposed to estimate the free energy for an ensemble of conformations. Loop conformations were generated by using two EDISON_Chem programs GalaxyFill and GalaxySC, and colony energy was designed for this sampling by tuning relevant parameters. On a test set of 40 loops, the accuracy of predicted loop structure improved on average by scoring with the colony energy compared to scoring by energy alone. In addition, high correlation between colony energy and deviation from the native structure suggested that more extensive sampling can further improve the prediction accuracy. In another test on 6 ligand-binding loops that show conformational changes by ligand binding, both ligand-free and ligand-bound states could be identified by using colony energy when no information on the ligand-bound conformation is used.
Protein phosphatase manganese dependent 1D (PPM1D) is one of the Ser/Thr protein phosphatases belongs to the PP2C family. They play an important role in cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Even though PPM1D is involved in the pathophysiology of various tumors, the three dimensional protein structure is still unknown. Hence in the present study, homology modelling of PPM1D was performed. 20 different models were modelled using single- and multiple-template based homology modelling and validated using different techniques. Best models were selected based on the validation. Three models were selected and found to have similar structures. The predicted models may be useful as a tool in studying the pathophysiological role of PPM1D.
The most popular protein structure prediction method is comparative modeling. To guarantee accurate comparative modeling, the sequence alignment between a query protein and a template should be accurate. Although choosing the best template based on the protein sequence alignments is most critical to perform more accurate fold-recognition in comparative modeling, even more critical is the sequence alignment quality. Contrast to a lot of attention to developing a method for choosing the best template, prediction of alignment accuracy has not gained much interest. Here, we develop a method for prediction of the shift score, a recently proposed measure for alignment quality. We apply support vector regression (SVR) to predict shift score. The alignment between a query protein and a template protein of length n in our own library is transformed into an input vector of length n +2. Structural alignments are assumed to be the best alignment, and SVR is trained to predict the shift score between structural alignment and profile-profile alignment of a query protein to a template protein. The performance is assessed by Pearson correlation coefficient. The trained SVR predicts shift score with the correlation between observed and predicted shift score of 0.80.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.1
/
pp.26-32
/
2018
The protein secondary structures are important information for studying the evolution, structure and function of proteins. Recently, deep learning methods have been actively applied to predict the secondary structure of proteins using only protein sequence information. In these methods, widely used input features are protein profiles transformed from protein sequences. In this paper, to obtain an effective protein profiles, protein profiles were constructed using protein sequence search methods such as PSI-BLAST and HHblits. We adjust the similarity threshold for determining the homologous protein sequence used in constructing the protein profile and the number of iterations of the profile construction using the homologous sequence information. We used the protein profiles as inputs to convolutional neural networks and recurrent neural networks to predict the secondary structures. The protein profile that was created by adding evolutionary information only once was effective.
One large topic in comparative genomics is to predict functional annotation by classifying protein sequences. Computational approaches for function prediction include protein structure prediction, sequence alignment and domain prediction or binding site prediction. This paper is on another computational approach searching for sets of homologous sequences from sequence similarity graph. Methods based on similarity graph do not need previous knowledges about sequences, but largely depend on the researcher's subjective threshold settings. In this paper, we propose a genome sequence clustering method of iterative testing and graph decomposition, and a simple method to calculate a strict threshold having biochemical meaning. Proposed method was applied to known bacterial genome sequences and the result was shown with the BAG algorithm's. Result clusters are lacking some completeness, but the confidence level is very high and the method does not need user-defined thresholds.
HP0827 has two RNP motif which is a very common protein domain involved in recognition of a wide range of ssRNA/DNA.We acquired 3D NMR spectra of HP0827 which shows well dispersed and homogeneous signals which allows us to assign 98% of all $^1H_N$, $^{15}N$, $^{13}C_{\alpha}$, $^{13}C_{\beta}$ and $^{13}C$=O resonances and 90% of all sidechain resonances. The sequence-specific backbone resonance assignment of HP0827 can be used to gain deeper insights into the nucleic acids binding specificity of HP0827 in the future study. Here, we report secondary structure prediction of HP0827 derived from NMR data. Additionally, ssRNA/DNA binding assay studies was also conducted. This study might provide a clue for exact function of HP0827 based on structure and sequence.
Predication of protein interaction sites for monomer structures can reduce the search space for protein docking and has been regarded as very significant for predicting unknown functions of proteins from their interacting proteins whose functions are known. In the other hand, the prediction of interaction sites has been limited in crystallizing weakly interacting complexes which are transient and do not form the complexes stable enough for obtaining experimental structures by crystallization or even NMR for the most important protein-protein interactions. This work reports the calculation of 3D surface patches of complex structures and their properties and a machine learning approach to build a predictive model for the 3D surface patches in interaction and non-interaction sites using support vector machine. To overcome classification problems for class imbalanced data, we employed an under-sampling technique. 9 properties of the patches were calculated from amino acid compositions and secondary structure elements. With 10 fold cross validation, the predictive model built from SVM achieved an accuracy of 92.7% for classification of 3D patches in interaction and non-interaction sites from 147 complexes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.