• Title/Summary/Keyword: protein stabilization

Search Result 148, Processing Time 0.023 seconds

PKA-Mediated Stabilization of FoxH1 Negatively Regulates ERα Activity

  • Yum, Jinah;Jeong, Hyung Min;Kim, Seulki;Seo, Jin Won;Han, Younho;Lee, Kwang-Youl;Yeo, Chang-Yeol
    • Molecules and Cells
    • /
    • v.28 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • Estrogen receptor ${\alpha}$ ($ER{\alpha}$) mediates the mitogenic effects of estrogen. $ER{\alpha}$ signaling regulates the normal growth and differentiation of mammary tissue, but uncontrolled $ER{\alpha}$ activation increases the risk to breast cancer. Estrogen binding induces ligand-dependent $ER{\alpha}$ activation, thereby facilitating $ER{\alpha}$ dimerization, promoter binding and coactivator recruitment. $ER{\alpha}$ can also be activated in a ligand-independent manner by many signaling pathways, including protein kinase A (PKA) signaling. However, in several $ER{\alpha}$-positive breast cancer cells, PKA inhibits estrogen-dependent cell growth. FoxH1 represses the transcriptional activities of estrogen receptors and androgen receptors (AR). Interestingly, FoxH1 has been found to inhibit the PKA-induced and ligand-induced activation of AR. In the present study, we examined the effects of PKA activation on the ability of FoxH1 to represses $ER{\alpha}$ transcriptional activity. We found that PKA increases the protein stability of FoxH1, and that FoxH1 inhibits PKA-induced and estradiol-induced activation of an estrogen response element (ERE). Furthermore, in MCF7 cells, FoxH1 knockdown increased the PKA-induced and estradiol-induced activation of the ERE. These results suggest that PKA can negatively regulate $ER{\alpha}$, at least in part, through FoxH1.

RNA Binding Protein Rbms1 Enables Neuronal Differentiation and Radial Migration during Neocortical Development by Binding and Stabilizing the RNA Message for Efr3a

  • Habib, Khadija;Bishayee, Kausik;Kang, Jieun;Sadra, Ali;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.45 no.8
    • /
    • pp.588-602
    • /
    • 2022
  • Various RNA-binding proteins (RBPs) are key components in RNA metabolism and contribute to several neurodevelopmental disorders. To date, only a few of such RBPs have been characterized for their roles in neocortex development. Here, we show that the RBP, Rbms1, is required for radial migration, polarization and differentiation of neuronal progenitors to neurons in the neocortex development. Rbms1 expression is highest in the early development in the developing cortex, with its expression gradually diminishing from embryonic day 13.5 (E13.5) to postnatal day 0 (P0). From in utero electroporation (IUE) experiments when Rbms1 levels are knocked down in neuronal progenitors, their transition from multipolar to bipolar state is delayed and this is accompanied by a delay in radial migration of these cells. Reduced Rbms1 levels in vivo also reduces differentiation as evidenced by a decrease in levels of several differentiation markers, meanwhile having no significant effects on proliferation and cell cycle rates of these cells. As an RNA binding protein, we profiled the RNA binders of Rbms1 by a cross-linked-RIP sequencing assay, followed by quantitative real-time polymerase chain reaction verification and showed that Rbms1 binds and stabilizes the mRNA for Efr3a, a signaling adapter protein. We also demonstrate that ectopic Efr3a can recover the cells from the migration defects due to loss of Rbms1, both in vivo and in vitro migration assays with cultured cells. These imply that one of the functions of Rbms1 involves the stabilization of Efr3a RNA message, required for migration and maturation of neuronal progenitors in radial migration in the developing neocortex.

A Recent Research Trends for Food Emulsions using Pickering Stabilization of Nano-particles (나노 입자의 피커링 안정화를 이용한 식품 에멀젼의 최근 연구동향)

  • Cho, Wan-Goo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.238-247
    • /
    • 2012
  • Nanotechnology in the food industry is an emerging area with considerable research and potential products. Solid particles of nanoscale and microscale dimensions are becoming recognized for their potential application in the formulation of novel dispersed systems containing emulsified oil or water droplets. This review describes developments in the formation and properties of food-grade emulsion systems based on edible fat crystals, silica nanoparticles, and novel particles of biological origin nanocrystals. The special features characterizing the properties of Pickering stabilized droplets are focused in comparison with those of protein-stabilized emulsions. We also review describes application examples of these in the food industry.

Immobilization and Stability of Lipase from Mucor racemosus NRRL 3631

  • Adham, Nehad Zaki;Ahmed, Hanan Mostafa;Naim, Nadia
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.332-339
    • /
    • 2010
  • The lipase from Mucor racemosus NRRL 3631 was partially purified by fractional precipitation using 60% ammonium sulfate, which resulted in a 8.33-fold purification. The partially purified lipase was then immobilized using different immobilization techniques: physical adsorption, ionic binding, and entrapment. Entrapment in a 4% agar proved to be the most suitable technique (82% yield), as the immobilized lipase was more stable at acidic and alkaline pHs than the free enzyme, plus 100% of the original activity was retained owing to the thermal stability of the immobilized enzyme after heat treatment for 60 min at $45^{\circ}C$. The calculated half-lives (472.5, 433.12, and 268.5 min at 50, 55, and $60^{\circ}C$, respectively) and the activation energy (9.85 kcal/mol) for the immobilized enzyme were higher than those for the free enzyme. Under the selected conditions, the immobilized enzyme had a higher $K_m$ (11.11 mM) and lower $V_{max}$ (105.26 U/mg protein) when compared with the free enzyme (8.33 mM and 125.0 U/mg protein, respectively). The operational stability of the biocatalyst was tested for both the hydrolysis of triglycerides and esterification of fatty acids with glycerol. After 4 cycles, the immobilized lipase retained approximately 50% and 80% of its original activity in the hydrolysis and esterification reactions, respectively.

Staphylococcal methicillin resistance expression under various growth conditions

  • Lee, Yoo-Nik;Ryoung, Poo-Ha;Lee, Young-Ik
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • To improve the detection of methicillin resistant staphylococci, lowered incubation temperature (30.deg.) and inclusion of sodium chloride in media have been empirically recommended. However, in this study, we found that sodium chloride in Peptone-Yeast Extract-K$\_$2/HPO$\_$4/ (PYK) medium decreased methicillin minimum inhibitory concentrations. Divalent cations were shown to restore the expression of staphylococcal methicillin resistance. However, when it was determined by efficiency of plating, sodium chloride increased methicillin resistance expression on agar medium in which higher divalent cations were contained in the agar medium. The decrease of minimum inhibitory concentrations at 30.deg.C by sodium chloride occurred in Brain Heart Infusion but did not occur in other media investigated. Interestingly, both PYK and Brain Heart Infusion media had peptone, which contain cholic acids having detergent activities. Inclusion of sodium chloride in PYK caused a higher rate of autolysis. Penicillin binding protein 2a that has a low affinity to beta-lactam antibiotics, was highly inducible in methicillin resistant Staphylococcus epidermidis strains. In this study, we found that autolysins that are activated by the sodium chloride decreased the minimum inhibitory concentration at 30.deg.C, and peptidoglycan is weakened due to the presence of methicillin. Peptone in the media may aggravate the fragile cells. However, stabilization due to the presence of divalent cations and production of penicilin binding protein 2a increase the survival of staphylococci.

  • PDF

Biological Treatment of Starch Waste Part 1. Isolation of Wheat Starch Waste Decomposing Organisms and Their Efficiency on Waste Treatment (전분폐수의 생물학적 처리에 관한 연구 1. 소맥 전분포수 처리균의 분리와 처리효과)

  • 기우경
    • Microbiology and Biotechnology Letters
    • /
    • v.3 no.3
    • /
    • pp.117-122
    • /
    • 1975
  • In order to develop an activated sludge which can be used for both waste treatment and protein source of animal feed, microorganisms were isolated from sewages of various wheat or sweet potato starch processing plants and their activities were tested. Out of 32 isolates which composed of two protozoan genera and 13 bacterial strains, were screened and three bacterial stranis were found to be most effective in both floe-formation and wheat starch waste liquid stabilization.

  • PDF

The Relationship between Prohibitin 1 Expression, Hepatotoxicity Induced by Acetaminophen, and Hepatoprotection by S-Adenosylmethionine in AML12 Cells

  • Eunhye Cho;Soohan Jung;Jina Kim;Kwang Suk Ko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1447-1453
    • /
    • 2022
  • Prohibitin 1 (Phb1) is a pleiotropic protein, located mainly in the mitochondrial inner membrane and involved in the regulation of cell proliferation and the stabilization of mitochondrial protein. Acetaminophen (APAP) is one of the most commonly used over-the-counter analgesics worldwide. However, at high dose, the accumulation of N-acetyl-p-benzoquinone imine (NAPQI) can lead to APAP-induced hepatotoxicity. In this study, we sought to understand the regulation of mRNA expression in relation to APAP and GSH metabolism by Phb1 in normal mouse AML12 hepatocytes. We used two different Phb1 silencing levels: high-efficiency (HE, >90%) and low-efficiency (LE, 50-60%). In addition, the siRNA-transfected cells were further pretreated with 0.5 mM of Sadenosylmethionine (SAMe) for 24 h before treatment with APAP at different doses (1-2 mM) for 24 h. The expression of APAP metabolism-related and antioxidant genes such as Cyp2e1 and Ugt1a1 were increased during SAMe pretreatment. Moreover, SAMe increased intracellular GSH concentration and it was maintained after APAP treatment. To sum up, Phb1 silencing and APAP treatment impaired the metabolism of APAP in hepatocytes, and SAMe exerted a protective effect against hepatotoxicity by upregulating antioxidant genes.

Molecular Cloning of a cDNA Encoding Putative Apolipophorin III from the Silkworm, Bombyx mori

  • Yun, Eun-Young;Goo, Tae-Won;Kim, Sung-Wan;Hwang, Jae-Sam;Kwon, O-Yu;Kang, Seok-Woo
    • Proceedings of the Korean Society of Sericultural Science Conference
    • /
    • 2003.10a
    • /
    • pp.85-86
    • /
    • 2003
  • Apolipophorin III (apoLp-III) is a protypical exchangeable apolipoprotein that is abundant in hemolymph of many insect species. Its function lies in the stabilization of low-density lipophorin particles (LDLp) crossing the hemocoel in phases of high energy consumption to deliver lipids from the fat body to the flight muscle cells. But, recent studies with naive Galleria mellonella-apoLp-III gave first indications of an unexpected role of that protein in insect immune activation (Niere et al., 1999). (omitted)

  • PDF

Effect of Cross-Linking Agents on L-Sorbose Production by Immobilized Gluconobacter suboxydans Cells

  • PARK, YOUNG-MIN;SANG-KI RHEE;EUI-SUNG CHOI;IN SIK CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.696-699
    • /
    • 1998
  • Biological oxidation of D-sorbitol to L-sorbose using permeated and immobilized cells of Gluconobacter suboxydans was carried out to investigate the optimum reaction condition. The stabilization effect of cross-linking agents such as glutaraldehyde, tannic acid, and polyethylene imine to prevent the leakage of enzymes from beads containing permeated and immobilized cells of G. suboxydans was examined by the production of L-sorbose from the mixture of D-sorbitol and gluconic acid. The protein concentration effused from immobilized beads treated with only glutaraldehyde was $5.2\mug/m\ell$ after 20 h. The beads of G. suboxydans immobilized with alginate and cross-linked with 0.3% glutaraldehyde was the most useful for the oxidation of D-sorbitol to L-sorbose.

  • PDF