• Title/Summary/Keyword: protein resistance

Search Result 1,291, Processing Time 0.025 seconds

Characterization of a paraquat resistance of Ochrobactrum anthropi JW-2. (Ochrobactrum anthropi JW-2의 paraquat 내성에 관한 특성)

  • 원성혜;이병현;조진기
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The bacterial strain JW-2 which conferred resistance against paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) was isolated from soil. The strain was identified as an Ochrobactrum anthropi based on its morphological, physiological, biological and fatty acid composition, and was designated as Ochrobactrum anthropi JW-2. We compard paraquat resistance of O. anthropi JW-2 with Escherichia coli J105. In the presence of 100mM paraquat, E. coli JM105 was not grown whereas the growth rate of O. anthropi was about 70% of control. We compared the sensitivity of O. anthropi JW-2 and E. coli J105 to redox-cycling compounds such as paraquat, plumbagin or menadione, which are known to exacebate wuperoxide generation. O. anthropi JW-2 did not show cross-resistance to plumbagin or menadione. superoxide dismutase activity was increased in paraqunt-treated E. coli JM105 while it was not increased in O.anthropi JW-2. These results suggest that the mechanism of paraquat resistance in O.anthropi JW-2 is probably due to selectively decreased permeability toward paraquat by membrane protein.

  • PDF

Antibiotic Resistance of Staphylococcus Aureus (황색포도알균의 항생제 내성)

  • Kim, Yun-Kyung;Hong, Hae-Sook;Jeong, Jae-Sim
    • Journal of Korean Biological Nursing Science
    • /
    • v.8 no.1
    • /
    • pp.5-14
    • /
    • 2006
  • Staphyloccus aureus is one of the most important pathogens in clinical settings. It is also one of the leading causes of nosocomial infections and the dissemination of multiple drug-resistant strains, mainly methicillin resistant Staphyloccus aureus, and the recent emergence of a vancomycin resistant MRSA is the concern to hospital worldwide. MRSA strains have acquired multiple resistance to a wide range of antibiotics, including aminoglycosides and macrolides. $\beta$-Lactam resistance of methicillin-resistnat Staphyococcus aureus is determined by the function of penicillin binding protein 2'(PBP2') encoded by the methicillin resistance gene mec A. MRSA strains carry methicillin resistance gene mecA, encoded by a mobile genetic element designated staphylococoal cassette chromosome mec(SCCmec). MRSA clones are defined by the type of SCCmec element and the genotype of the methicilline-susceptible Staphyococcus aureus chromosome in which the SCCmec element is integrated.

  • PDF

Molecular Mechanisms Involved in Bacterial Speck Disease Resistance of Tomato

  • Kim, Young-Jin;Gregory B. Martin
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2004
  • An important recent advance in the field of plant-microbe interactions has been the cloning of genes that confer resistance to specific viruses, bacteria, fungi or insects. Disease resistance (R) genes encode proteins with predicted structural motifs consistent with them having roles in signal recognition and transduction. Plant disease resistance is the result of an innate host defense mechanism, which relies on the ability of plant to recognize pathogen invasion and efficiently mount defense responses. In tomato, resistance to the pathogen Pseudomonas syringae pv. tomato is mediated by the specific recognition between the tomato serine/threonine kinase Pto and bacterial protein AvrPto or AvrPtoB. This recognition event initiates signaling events that lead to defense responses including an oxidative burst, the hypersensitive response (HR), and expression of pathogenesis- related genes.

New Aspects of Gene-for-Gene Interactions for Disease Resistance in Plant

  • Nam, Jaesung
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.83-87
    • /
    • 2001
  • Disease resistance in plants is often controlled by gene-for-gene mechanism in which avirulence (avr) gene products encoding by pathogens are specifically recognized, either directly or indirectly by plant disease resistance (R) gene products. Recent studies arising from molecular cloning of a number of R genes from various plant species that confer resistance to different pathogens and corresponding avr genes from various pathogens resulted in the accumulation of a wealth of knowledge on mode of action of gene-for-gene interaction. Specially, members of the NBS-LRR class of R genes encoding proteins containing a nucleotide binding site (NBS) and carboxyl-terminal leucine-rich repeats (LRRs) confer resistance to very different types of phytopathogens, such as bacteria, fungi, oomycetes, viruses, nematodes and aphids. This article reviewed the molecular events that occur up-stream of defense response pathway, specially, bacterial avr gene protein recognition mediated by NBS-LRR type R gene product in plant based on current research results of well studied model plants.

  • PDF

Resistance of SOD2-transgenic petunia line to oxidative stress

  • Lee, Su-Young;Han, Bong-Hee;Kim, Yeong-Tae;Kim, Jin-Seog
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.562-566
    • /
    • 2010
  • SOD2-transgenic $T_3$ petunia line (A2-36-2-1-1-35) was treated with different levels of methyl viologen (MV) to determine its resistance to oxidative stress. Four (4) levels of MV (0, 100, 200, and $400\;{\mu}M$) were applied. The SOD2-transgenic $T_3$ petunia line exhibited a very significant oxidative stress resistance at the highest MV concentration ($400\;{\mu}M$) treatment compared to non-transgenic plant. RNA and protein expression of SOD2 transgene and higher parenchyma cell density in the transgenic petunias exhibiting resistance to oxidative stress proves its contribution to the expression of its resistance to oxidative stress.

Acibenzolar-S-Methyl(ASM)-Induced Resistance against Tobamoviruses Involves Induction of RNA-Dependent RNA Polymerase(RdRp) and Alternative Oxidase(AOX) Genes

  • Madhusudhan, Kallahally Nagendra;Deepak, Saligrama Adavigowda;Prakash, Harishchandra Sripathi;Agrawal, Ganesh Kumar;Jwa, Nam-Soo;Rakwal, Randeep
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2008
  • Tobamoviruses are the major viral pathogens of tomato and bell pepper. The preliminary results showed that Acibenzolar-Smethyl(ASM; S-methylbenzo(1,2,3) thiadiazole-7-carbothiate) pre-treatment to tomato and tobacco plants reduces the concentration of Tomato mosaic tobamovirus(ToMV) and Tobacco mosaic tobamovirus(TMV) in tomato and bell pepper seedlings, respectively. Pre-treatment of the indicator plant(Nicotiana glutinosa) with the ASM followed by challenge inoculation with tobamoviruses produced a reduced number and size of local lesions(67 and 79% protection over control to TMV and ToMV inoculation, respectively). In order to understand the mechanism of resistance the gene expression profiles of antiviral genes was examined. RT-PCR products showed higher expression of two viral resistance genes viz., alternative oxidase(AOX) and RNA dependent RNA polymerase(RdRp) in the upper leaves of the ASM-treated tomato plants challenge inoculation with ToMV. Further, the viral concentration was also quantified in the upper leaves by reverse transcription PCR using specific primer for movement protein of ToMV, as well as ELISA by using antisera against tobamoviruses. The results provided additional evidence that ASM pre-treatment reduced the viral movement to upper leaves. The results suggest that expressions of viral resistance genes in the host are the key component in the resistance against ToMV in the inducer-treated tomato plants.

  • PDF

Predictive factors of resistance to intravenous immunoglobulin and coronary artery lesions in Kawasaki disease

  • Lee, Hye Young;Song, Min Seob
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.12
    • /
    • pp.477-482
    • /
    • 2016
  • Purpose: We conducted a study to determine which factors may be useful as predictive markers in identifying Kawasaki disease (KD) patients with a high risk of resistance to intravenous immunoglobulin (IVIG) and developing coronary artery lesions (CAL). Methods: We enrolled 287 patients in acute phase of KD at a single center. The demographic, clinical and laboratory data were collected retrospectively. Results: There were 34 patients in the IVIG resistant group. The IVIG resistant group had significantly higher serum N-terminal-pro-brain natriuretic protein (NT-proBNP) levels (P<0.01) and polymorphonuclear neutrophil (PMN) percentage (P<0.01) in comparison to the IVIG responders. The results yielded sensitivity (78.8%, 60.6%), specificity (58.2%, 90%) and cutoff value (628.6 pg/mL, 80.3%) of NT-proBNP and PMN respectively, in predicting IVIG resistance. Despite IVIG administration, 13 of the 287 patients developed CAL. The patients in the CAL group had higher NT-proBNP levels (P<0.01) and higher PMN percentage (P<0.01). In these patients, the results yielded sensitivity (73.3%, 56.7%), specificity (67.9%, 88.9%) and cutoff value (853.4 pg/mL, 80.3%) of NT-proBNP and PMN respectively, for predicting CAL. The area under the curve (AUC) for predicting resistance to IVIG was NT-proBNP 0.712, PMN 0.802. The AUC for predicting CAL was NT-proBNP 0.739, and PMN 0.773. Conclusion: Serum NT-proBNP levels and PMN percentage were significantly elevated in patients with KD with IVIG resistance and CAL. Thus, they may be useful predicting markers for IVIG resistance and development of CAL in KD patients.

Stable Expression of TMV Resistance and Responses to Major Tobacco Diseases in the Fifth Generation of TMV CP Transgenic Tobacco

  • Park, Seong-Weon;Lee, Ki-Won;Lee, Cheong-Ho;Kim, Sang-Seock;Park, Eun-Kyung;Choi, Soon-Yong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.66-70
    • /
    • 1998
  • TMV resistant lines (TRLs) originated from the Blo plant of Nicotiana tabacum cv. NC82 transformed with TMV coat protein cDNA which initially showed delayed disease symptom were selected for increased resistance in each subsequent generation. The result of field experiment of the transgenic tobacco lines in the fifth generation for TMV resistance and their response to other tobacco diseases (black shank, bacterial wilt, and powdery mildew) is described in this report. When fifteen TRLs of the fifth generation were tested for TMV resistance by mechanically inoculating the individual plants, over 95 percent of the plants of 6 lines showed complete resistance even 8 weeks after the inoculation. Average frequency of the resistant plants in TRLs of the fifth generation 8 weeks after the inoculation was 87%. Stable insertion and expression of TMV coat protein cDNA in the fifth generation of the transgenic tobacco plant were confirmed by PCR and immunoblot hybridization, respectively. All TRLs were resistant to the black shank but were susceptible to the bacterial wilt disease and the powdery mildew to the same degree as non-transgenic NC82 was. Therefore, it was indicated that the phenotypes related at least to disease resistance were not changed in the transgenic tobacco. Key words : TMV CP cDNA, TMV resistant tobacco plant, transformation.

  • PDF

Hydrophilic Finish of Polyester Fabrics using Sericin Finishing Agents (세리신 가공제에 의한 폴리에스터 직물의 친수화 가공)

  • Park, In-Woo;Hwang, Gye-Soon;Hong, Young-Ki;Bae, Han-Soo;Bae, Kie-Seo
    • Textile Coloration and Finishing
    • /
    • v.21 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • First of all, the properties imparted to PET fabrics are resistance to and recovery from creasing or wrinkling when wet or dry; high resistance to stretch in the filament yarns but not in the staple; high abrasion resistance; good texture and appearance; resistance to heat ageing; good chemical resistance and good resistance, behind glass, to sunlight. But, the low moisture regain of PET fabric conduces to static troubles in textile processing. Furthermore, garments made from PET may, during wear, develop electric charges which attract to the fabric particles of soil(dirt, swarf, dust) flying in the air, so that the cuffs of shirts, for example, become soiled quickly and are not easily laundered clean. The sericin constitutes 25$\sim$30% of silk protein and surrounds the fibroin fiber with sticky layer that supports the formation of a cocoon. The useful biochemical properties of sericin protein are oxidation resistant, antibacterial, UV resistant, hydrophilic property, and good affinity with hydrophobic material. These properties can be used as an improving reagent or a coating agent for natural and synthetic fibers, fabrics, and other intermediate products. The sericin is also applied to cross-link, and can be blended with other materials. In this study, we modified the surface of PET fabric by mixture of sericin finishing agent; sericin, polyuretane binder and 1,2,3,4-butanetetracarboxylic acid (BTCA) cross-link agent. Also, we investigated the finshing effect; moisture regain, stiffness, handle, drape and electrostatic. The moisture regain of PET fabric treated with sericin finishing agent was higher than that of untreated PET fabric. As a result of evaluating influence about handle of PET fabrics treated with sericin finishing agent, it was confirmed that the sericin finishing agent could be use as a linen like finishing agent.

Rice genes specifically expressed in a rice mutant gained resistance to rice blast.(oral)

  • C. U. Han;Lee, C. H.;K. S. Jang;Park, Y. H.;H. K. Lim;Kim, J.C.;Park, G. J.;J.S. Cha;Park, J. E.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.66.2-66
    • /
    • 2003
  • A gain-of-function mutant, SHM-11 obtained through gamma-ray mutagenesis, is resistant to rice blast caused by Magnaporthe grisea while wild type Sanghaehyanghyella is highly susceptible to the same disease. The resistance in the mutant was not race-specific when we tested with four races (KJ-201, KI-1113a, KI-313, KI-409) of M. grisea. To identify genes involved disease resistance in the gain-of-function mutant, genes specifically expressed in the mutant were selected by suppression subtractive hybridization using cDNAS of blast-inoculated mutant and wild type as a tester and a driver, respectively, Random 200 clones from the subtracted library were selected and analyzed by DNA sequencing. The sequenced genes represented three major groups related with disease resistance; genes encoding PR proteins, genes probably for phytoalexin biosynthesis, and genes involved in disease resistance signal transduction. A gene encoding a putative receptor-like protein kinase was identified as highly expressed only in the gain-of-function mutant after blast infection. The role of the putative receptor-like protein kinase gene during blast resistance will be further studied.

  • PDF