• 제목/요약/키워드: protein recovery yield

검색결과 83건 처리시간 0.033초

반응표면 분석법을 이용한 Papaya 유액추출물에서 Crude Protein 회수 조건의 최적화 (Optimization of Crude Protein Recovery from Papaya Latex Extract Using Response Surface Methodology)

  • 오훈일;오상준;김정미
    • 한국식품과학회지
    • /
    • 제29권4호
    • /
    • pp.752-757
    • /
    • 1997
  • Papaya 유액 추출물에서 protein을 정제 회수하기 위해 papaya 유액으로부터 추출한 추출액을 경제적이고도 처리가 비교적 간단한 ethanol 침전방법을 사용하였다. 실험계획법에 의하여 설정된 3수준의 부분요인 실험법에 의하여 실시된 각 처리구의 실험 결과를 다중 회귀분석 방법에 의해 다음과 같은 모델식 $Y=7.4554+1.2657X_{2}+1.0552X_{3}-1.7407X_{4}-0.01666X_{2}\;^{2}-0.1134X_{4}^{2}$을 산출하였으며 pH는 다중 회귀분석에 의해 제거되었다. 반응표면 분석법(RSM)을 이용한 결과 protein을 회수하기 위한 최적 조건으로는 protein 농도가 38.2 mg/ml, 40%의 ethanol 농도, 침전 온도는 $-8^{\circ}C$였다. 이러한 최적 조건에 의한 회수율의 실험치는 68.97%로 예측치인 77.28%에 근접한 결과였다. 또한 유의 수준을 검정하는 자유도와 F-value도 양호한 값(p<0.001)을 나타내어 종속변수와 독립변수와의 상관관계가 뛰어남을 알 수 있으며 따라서 다중 회귀분석에 얻어진 모델식의 각 변수들 사이에는 유의성이 높음을 알 수 있었다.

  • PDF

알칼리에 의한 천마 단백질 추출의 최적 pH 조건 (Optimized pH condition of protein extraction of Gastrodia elata Blume by alkaline method)

  • 장혜림;윤경영
    • 한국식품저장유통학회지
    • /
    • 제22권2호
    • /
    • pp.256-260
    • /
    • 2015
  • 본 연구에서는 알칼리 사용에 따른 갈변을 최소화하고 영양적으로 우수한 천마 단백질을 보다 효율적으로 추출하기 위하여 용출 및 침전 pH에 따른 단백질의 갈변도와 함량을 측정함으로써 탈지 천마 단백질 알칼리 추출의 최적 pH 조건을 설정하고자 하였다. 천마의 수분은 약 15%로 측정되었으며, 대부분 탄수화물로 구성되어 있었고, 단백질의 함량이 높은 것으로 확인되었다. 이러한 단백질을 다양한 pH에서 용출시킨 결과 pH가 증가함에 따라 용출된 단백질의 양이 증가하였으며, 갈변도 또한 증가함을 보였다. 침전 pH에 따른 단백질 함량은 pH 4에서 침전된 pellet이 가장 많은 함량을 나타내었으며, 상등액의 단백질 함량 또한 대부분 pH 4로 침전시킨 경우 가장 적은 것으로 확인되었다. 뿐만 아니라 단백질의 회수율도 침전 pH가 4일 때 가장 높은 값을 나타내었다. 따라서 갈변도와 단백질 함량을 고려한 탈지 천마 단백질 추출을 위한 최적조건은 용출 pH 9와 침전 pH 4로 결정되었다.

난황 단백질의 효소 가수분해에 의한 sialic acid의 회수 공정 개발 (Process Development for the Recovery of Sialic Acid Fraction by Enzymatic Hydrolysis of Egg Yolk Protein)

  • 강병철;이광현
    • 생명과학회지
    • /
    • 제15권1호
    • /
    • pp.9-14
    • /
    • 2005
  • 난황 단백질의 효소에 의한 가수분해에서 에탄올의 농도가 증가할수록 고형물과 단백질의 회수가 증가함을 알 수 있었다. 이것은 유화층을 에탄올의 증가가 감소시켰기 때문이다. 그러나 가수분해물에서 단백질 함량이나 sialic acid의 함량은 에탄을 농도와는 관계없이 일정하였다. 한외여과 후에 retentate에 대한 에탄올의 영향을 조사하였다. 마찬가지로 고형물의 회수는 에탄을 농도의 증가와 함께 증가하였다. 그리고 retentate에서 sialic acid의 함량은 대략 $2.5\%$정도로 일정하고 에탄올의 농도에 영향을 받지 않았다 이상의 결과로부터 난황 단백질의 효소 가수분해를 통해 sialic acid가 함유된 제품을 얻고자 할 때는 원료 난황단백질에 포함된 에탄올의 함량을 증가시킬수록 높은 수율의 제품을 얻을 수 있다. 본 실험에서는 원료 난황 단백질 중에서 $40\%$의 에탄을 함량까지는 제품 수율이 계속 증가하는 경향을 보였다. 난황 단백질 가수분해물의 한외여과에서 농축단계에서는 막 모듈의 MWCO의 차이에도 불구하고 retentate에서 총 고형물의 회수율은 비슷함을 나타내었으며, 투석에서 회수율은 MWCO가 작을수록 높아지지는 않았다. 제품에서의 sialic acid의 함량은 사용한 모듈에서 약 $2.0\%$를 나타내었다. 이것은 단백질 가수분해물에 비해 5배정도 상승한 결과이다. 본 연구에서 사용된 막 모듈 가운데서 Amicon 모듈이 제품의 회수율과 함량면에서 가장 우수한 특성을 보였다. 결론적으로 난황 단백질의 protease에 의한 가수분해에서 한외여과에 의해 순도를 높일 때 MWCO, 막 모듈의 type 그리고 운전조건 등을 잘 고려해 줄 때 최적의 조업조건을 얻을 수 있었다.

알칼리 추출법에 의한 탈지 미강 단백질 추출의 최적 pH 조건 (Optimum pH Condition of Defatted Rice Protein Extraction by Alkaline Method)

  • 김원;정소영;홍광원
    • 산업식품공학
    • /
    • 제15권2호
    • /
    • pp.143-147
    • /
    • 2011
  • 알칼리를 이용하여 탈지미강에서 단백질을 추출하기 위해 용출 pH(8, 9, 10, 11, 12) 5개 구간과 등전점 침전 pH(2, 4, 6) 3개 구간을 설정하고 각 pH 구간에서의 회수된 단백질 함량과 갈변, 전기영동 패턴 및 최종 수용성 단백질의 회수율을 비교 확인하였다. 용출 pH가 증가할수록 수용성 단백질의 회수율은 증가하였으나 동시에 갈변현상도 증가하였다. 등전점 침전 pH는 4에서 가장 많은 단백질을 회수할 수 있었다. SDS-PAGE 결과, 사용한 pH에 따라 추출된 단백질의 주요 패턴은 뚜렷한 차이가 없었으나, 높은 알칼리조건이 35 kDa 이하의 단백질 추출에 좀 더 용이하였다. 각 pH 구간별 용출 대비 수용성 단백질 회수율은 평균 31.5% 이었다. 용출 pH 11 및 침전 pH 4 구간에서 46.95%의 가장 높은 회수율을 나타냈으나 갈변이 급격히 증가하였다. 따라서 37.65%의 회수율을 나타낸 용출 pH 10 과 침전 pH 4 구간이 미강 단백질의 최적 추출조건임을 확인하였다.

SPATIAL YIELD VARIABILITY AND SITE-SPECIFIC NITROGEN PRESCRIPTION FOR THE IMPROVED YIELD AND GRAIN QUALITY OF RICE

  • Lee Byun-Woo;Nguyen Tuan Ahn
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2005년도 국제학술회의
    • /
    • pp.57-74
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, the two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if prescribed N for site-specific fertilizer management at panicle initiation stage (VRT) could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, ,33 kg N/ha at PIS) method. The trial field was subdivided into two parts and each part was subjected to UN and VRT treatment. Each part was schematically divided in $10\times10m$ grids for growth and yield measurement or VRT treatment. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for this calculation were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with average of 57kg/ha that was higher than 33kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%\;and\;7.1\%$ in VRT from $14.6\%\;and\;13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. Although N use efficiency of VRT compared to UN was not quantified due to lack of no N control treatment, the procedure used in this paper for VRT estimation was believed to be reliable and promising method for managing within-field spatial variability of yield and protein content. The method should be received further study before it could be practically used for site-specific crop management in large-scale rice field.

  • PDF

Managing Within-Field Spatial Yield Variation of Rice by Site-Specific Prescription of Panicle Nitrogen Fertilizer

  • Ahn Nguyen Tuan;Shin Jin Chul;Lee Byun-Woo
    • 한국작물학회지
    • /
    • 제50권4호
    • /
    • pp.238-246
    • /
    • 2005
  • Rice yield and protein content have been shown to be highly variable across paddy fields. In order to characterize this spatial variability of rice within a field, two-year experiments were conducted in 2002 and 2003 in a large-scale rice field of $6,600m^2$ In year 2004, an experiment was conducted to know if variable rate treatment (VRT) of N fertilizer, that was prescribed for site-specific management at panicle initiation stage, could reduce spatial variation in yield and protein content of rice while increasing yield compared to conventional uniform N topdressing (UN, 33kg N/ha at PIS) method. VRT nitrogen prescription for each grid was calculated based on the nitrogen (N) uptake (from panicle initiation to harvest) required for target rice protein content of $6.8\%$, natural soil N supply, and recovery of top-dressed N fertilizer. The required N uptake for target rice protein content was calculated from the equations to predict rice yield and protein content from plant growth parameters at panicle initiation stage (PIS) and N uptake from PIS to harvest. This model· equations were developed from the data obtained from the previous two-year experiments. The plant growth parameters for the calculation of the required N were predicted non-destructively by canopy reflectance measurement. Soil N supply for each grid was obtained from the experiment of year 2003, and N recovery was assumed to be $60\%$ according to the previous reports. The prescribed VRT N ranged from 0 to 110kg N/ha with an average of 57kg/ha that was higher than 33 kg/ha of UN. The results showed that VRT application successfully worked not only to reduce spatial variability of rice yield and protein content but also to increase rough rice yield by 960kg/ha. The coefficient of variation (CV) for rice yield and protein content was reduced significantly to $8.1\%$ and $7.1\%$ in VRT from $14.6\%$ and $13.0\%$ in UN, respectively. And also the average protein content of milled rice in VRT showed very similar value of target protein content of $6.8\%$. In conclusion the procedure used in this paper was believed to be reliable and promising method for reducing within-field spatial variability of rice yield and protein content. However, inexpensive, reliable, and fast estimation methods of natural N supply and plant growth and nutrition status should be prepared before this method could be practically used for site-specific crop management in large-scale rice field.

Large-scale Recovery of Recombinant Protein Inclusion Bodies Expressed in Escherichia coli

  • Middelberg. Anton P.J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제6권4호
    • /
    • pp.225-231
    • /
    • 1996
  • The production of recombinant proteins in Escherichia coli often leads to the formation of an intracellular inclusion body. Key process steps that can determine the economics of large-scale protein production from inclusion bodies are fermentation, inclusion body recovery, and protein refolding. Compared with protein refolding and fermentation, inclusion body recovery has received scant research attention. Nevertheless, it can control the final product yield and hence process cost for some products. Optimal separation of inclusion bodies and cell debris can also aid subsequent operations by removing contaminant particulates that foul chromatographic resins and contain antigenic pyrogens. In this review, the properties of inclusion bodies and cellular debris are therefore examined. Attempts to optimise the centrifugal separation of inclusion bodies and debris are also discussed.

  • PDF

Partitioning of Recombinant Human Interleukin-2 in a Poly(ethylene glycol)-Dextran Aqueous Two-Phase System

  • Lee, In-Young;Lee, Sun-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제2권2호
    • /
    • pp.135-140
    • /
    • 1992
  • The partitioning of recombinant human interleukin-2(rhII-2) in PEG 8000-dextran 38800 aqueous two-phase system has been investigated using three different sources of rhIL-2. In the case of pure rhIL-2, the solubility in a PEG-dextran two-phase system was low and most of rhIL-2 was partitioned into the bottom phase. For the recovery of rhIL-2 from insoluble protein aggregates, the inclusion bodies of recombinant E. coli were solubilized by the treatment with sodium dodecyl sulfate (SDS). The addition of SDS significantly enhanced not only the solubility of rhIL-2 but also the partitioning of rhIL-2 to the top phase. When the ratio of SDS to rhIL-2 was 2.0, the partition coefficient(K) and the recovery yield(Y) at the top phase were 4.5 and 88%, respectively, at pH 6.8. In order to reduce the recovery steps further, SDS was directly added to the intact recombinant E. coli cells and then partitioned into the PEG/dextran aqueous two-phase system. The observed partition coefficient ($K{\cong{3.0$) and recovery yield ($Y{\geq}80%$ )of this method were comparable to the rhIL-2 recovery from insoluble protein aggregates. The results obtained in this work indicate that PEG-dextran two-phase partitioning might provide a simple way for the recovery and partial purification of recombinant proteins which are produced as inclusion bodies.

  • PDF

Evaluation of Acid-treated Fish Sarcoplasmic Proteins on Physicochemical and Rheological Characteristics of Pork Myofibrillar Protein Gel Mediated by Microbial Transglutaminase

  • Hemung, Bung-Orn;Chin, Koo Bok
    • 한국축산식품학회지
    • /
    • 제35권1호
    • /
    • pp.50-57
    • /
    • 2015
  • Fish sarcoplasmic protein (SP) is currently dumped as waste from surimi industry and its recovery by practical method for being the non-meat ingredient in meat industry would be a strategy to utilize effectively the fish resource. This study was aimed to apply pH treatment for fish SP recovery and evaluated its effect on pork myofibrillar protein (MP) gel. The pH values of fish SP were changed to 3 and 12, and neutralized to pH 7 before lyophilizing the precipitated protein after centrifugation. Acid-treated fish SP (AFSP) showed about 4-fold higher recovery yield than that of alkaline-treated SP and water absorption capacity was also about 1.2-fold greater. Because of the high recovery yield and water absorption capacity, AFSP was selected to incorporate into MP with/without microbial transglutaminase (MTG). The effects of AFSP and MTG on the physicochemical and rheological characteristics of MP and MP gel were evaluated. MTG induced an increase shear stress of the MP mixture and increase the breaking force of MP gels. MP gel lightness was decreased by adding AFSP. MP gel with MTG showed higher cooking loss than that without MTG. A reduction of cooking loss was observed when the AFSP was added along with MTG, where the insoluble particles were found. Therefore, AFSP could be contributed as a water holding agent in meat protein gel.

고단백질 함유 대두와 완두 중 Propineb 잔류분석을 위한 제단백 효과 (Improvement of Analytical Method for Propineb Residues in Glycine max (L.) Merrill and Pisum sativum L. using Deproteinization Process)

  • 함헌주;최정윤;허장현
    • 한국환경농학회지
    • /
    • 제41권3호
    • /
    • pp.206-216
    • /
    • 2022
  • BACKGROUND: Dithiocarbamate fungicide propineb can be analyzed quantitatively by derivatization reaction followed by HPLC/UVD, which has high reproducibility and stability. However, the presence of high protein in soybeans and peas affects the derivatization process resulting in extremely low recoveries. Therefore, this study was conducted to improve the analytical method for analysis of propineb in soybeans and peas by applying a deproteinization process using chloroform-gel method. METHODS AND RESULTS: The deproteinization process was carried out up to 6 times for soybeans and 5 times for peas using 50 mL chloroform. After 4 times of deproteinization process followed by a derivatization reaction with methyl iodide, the recovery yields of propineb in both pulses were >90%. However, the recovery yield tended to decrease when the deproteinization process was performed more than 5 times. The method limit of quantification (LOQ) was 0.04 mg/L. The recovery conducted in triplicate at 10 times and 50 times of the LOQ ranged from 87.2 to 95.0 % with a coefficient of variation <10%. CONCLUSION(S): This study confirmed that 4 times of deproteinization process using the chloroform-gel method was effective when derivatizing and analyzing dithiocarbamate fungicides in pulses with high protein content. However, depending on the initial protein content present in the pulses, there was a difference in the recovery: the lower the protein content, the higher the recovery rate of propineb. It is expected that the method proposed in this study could be applied to remove high content of protein as analytical interference substance from agricultural samples.