• Title/Summary/Keyword: protein folding

Search Result 230, Processing Time 0.024 seconds

Possible Molecular Chaperones for Lipoprotein Lipase in Endoplasmic Reticulum

  • Yang, Jeong-Yeh;Kim, Mee-Ae;Koo, Bon-Sun;Kim, Sun-Mee;Park, Jin-Woo
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.311-316
    • /
    • 1999
  • Studies in adipocytes indicate that secretion of active lipoprotein lipase (LPL) was strictly regulated by a quality control system in the endoplasmic reticulum (ER). However, there has been no report about the ER chaperones participating in the folding and assembly of LPL. Many chaperones are known to bind unfolded proteins and dissociate from them through the ATP-hydrolyzing reaction. In this study, putative ER chaperones for LPL were determined by affinity chromatography using denatured LPL as an affinity ligand and elution with ATP. BiP, grp94, calreticulin, and another 50 kDa K-D-E-L protein in the ER of rat adipose tissue were bound to denatured LPL and eluted by ATP. Calnexin was bound to denatured LPL; however, it was not eluted by ATP but by acetic acid. These results indicate that, at least, BiP, grp94, calreticulin, calnexin, and the unidentified 50 kDa protein might act as putative chaperones for the proper folding and assembly of LPL in ER.

  • PDF

Applications and Prospects of Ionic Liquids in Microbiology and Biochemical Engineering (이온성액체의 미생물.생명화학공학에의 응용과 전망)

  • Ha, Sung Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Ionic liquids (ILs) have been widely recognized as environmentally benign solvents. Their unique properties, including negligible vapor pressure, non-flammability, a wide liquid range and their tunable physicochemical properties by proper selection of cations and anions, make them attractive green solvents in a variety of fields such as organic synthesis/catalysis, extraction/ separation, and electrochemistry, amongst others. In this paper, the recent technological developments and their prospects in the application of ILs in microbiology and biochemical engineering, including enzymatic reactions, protein folding/refolding and biomass dissolution, are discussed.

Structural Characterization for N-Terminal Domain of Caveolin-l

  • Kim, Jongmin;Shin, Jaeyoung;Park, Heonyong
    • Animal cells and systems
    • /
    • v.7 no.3
    • /
    • pp.207-211
    • /
    • 2003
  • Caveolin-1 is a principal protein in the plasma membrane microdomains called caveolae. Caveolae play an important role in the transcytosis and pinocytosis. Therefore, caveolin-1 is most likely to work for the membrane dynamic events. In addition, caveolin-1 interacts with various signaling molecules. Although caveolin-1 possesses a variety of physiological functions, its structural properties were little construed. Here we analyzed the structural dynamics of the N-terminal caveolin-1 (residues 1-101), in order to better understand the structural properties in terms of its versatile functionality. We first analyzed its oligomeric form using GST-fused N-terminal domain, revealing that it equilibrates between a dimer and monomers in av concentration-dependent manner. The N-terminal domain of caveolin-1 was previously found to form a heptamer, so that our data suggest the dimeric form as an intermediate structure for the heptamer formation. Then, we obtained the folding profile, which indicated that $\DeltaG_{H2O}\;is\;about\;0.5\;\pm0.03$ kcal/mol. The stability of N-terminal domain is relatively low, indicating that N-terminal domain may not be crystalline. Conclusively, the dynamic and flexible structure of N-terminal domain appears more favorable to maintain the versatile functions of caveolin-1.

Role of Ser-33 and Asp-112 Residues in In vivo Folding of E, coli Tryptophan Synthase $\alpha$ Subunit (트립토판 중합료소 $\alpha$ 소단위체의 대장균내 구조형성과정에서의 Ser-33과 Asp-112 잔기의 역할)

  • 유충배;신혜자;임운기
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.304-312
    • /
    • 1996
  • In the present report, a p[ossibility of the interaction fo Ser-33 and Asp-112 residues in folding of tryptophan synthase $\alpha$ subunit was explored by examining the effect of single or double substitution of these residues on folding of $\alpha$ subunit in E. coli. $\alpha$ subunit of which Ser-33 was substituted with Leu (SL33) was accumulated as insoluble aggregate form, when overproduced in E. coli, whereas $\alpha$ subunit of which Asp-112 was replaced by Asn (DN112) or Gly (DG112) was accumulated as soluble form to the similar extent as wild type $\alpha$ subunit was. When these alterations were combined into one protein, the synergistic effect of residues 33 and 112 on the amount of aggregate form was shown. The amount of doubly altered SL33/DG112 $\alpha$ subunit as aggregate form was increased 5-13 fold that of SL33 $\alpha$ subunit, and the amount of SL33/DG112 $\alpha$ subunit as aggregate form was decreased 3-4 fold that of SL33 $\alpha$ subunit. Aggregates are derived from the specific association of partially folded or unassembled subunits in the folding process. Therefore, this result suggests that residues 33 and 112 of $\alpha$ subunit may unteract during the folding of this enzyme in E. coli.

  • PDF

Intragenic Suppressors for Expory-defective Signal Sequence Mutation of Ribose-binding Protein in Escherichia coli (대장균 리보스 결합단백질의 신호배열 변이에 대한 숙성체 부위의 회복돌연변이)

  • 이영희;송택선;김정호;박순희;박찬규
    • Korean Journal of Microbiology
    • /
    • v.29 no.5
    • /
    • pp.270-277
    • /
    • 1991
  • A mutational alteration in the signal sequence of ribose-binding protein (RBP) of Escherichia coli, rbsB103, completely blocks the export of the protein to the periplasm. Intragenic suppressors for this mutation have been selected on minimal medium with ribose as a sole carbon source. Six suppressor mutations were characterized in detail and were found to have single amino acid wubstitution in the mature portion of RBP, which resulted in the mobility shift of the proteins on SDS polyacrylamide gel. Amino acid changes of these suppressors were localized in several peptides which are packed to form the N terminal domain of typical bilobate conformation of RBP. The involvement of SecB, a molecular chaperone, was investigated in the suppression of signal sequence mutation. Translocation efficency was found to be increased by the presence of SecB for all suppressors. It is likely that the folding characteristics of RBP altered by the suppressor mutations affect the affinity of interaction between SecB and RBP.

  • PDF

Roles of Endoplasmic Reticulum Stress in Immune Responses

  • So, Jae-Seon
    • Molecules and Cells
    • /
    • v.41 no.8
    • /
    • pp.705-716
    • /
    • 2018
  • The endoplasmic reticulum (ER) is a critical organelle for protein synthesis, folding and modification, and lipid synthesis and calcium storage. Dysregulation of ER functions leads to the accumulation of misfolded- or unfolded-protein in the ER lumen, and this triggers the unfolded protein response (UPR), which restores ER homeostasis. The UPR is characterized by three distinct downstream signaling pathways that promote cell survival or apoptosis depending on the stressor, the intensity and duration of ER stress, and the cell type. Mammalian cells express the UPR transducers IRE1, PERK, and ATF6, which control transcriptional and translational responses to ER stress. Direct links between ER stress and immune responses are also evident, but the mechanisms by which UPR signaling cascades are coordinated with immunity remain unclear. This review discusses recent investigations of the roles of ER stress in immune responses that lead to differentiation, maturation, and cytokine expression in immune cells. Further understanding of how ER stress contributes to the pathogenesis of immune disorders will facilitate the development of novel therapies that target UPR pathways.

Effect of Added Proteins on Rheology of Squid Meat Paste Products (오징어 연제품의 물성에 미치는 단백질류의 영향)

  • 배태진;김해섭;최옥수
    • The Korean Journal of Food And Nutrition
    • /
    • v.16 no.2
    • /
    • pp.138-145
    • /
    • 2003
  • The effects of adding egg white, bovine plasma protein(bpp), gelatin and gluten on the rheological properties of squid meat paste product(squid meat kamaboko) were examined by the measurements of jelly strength, texture, moisture content, water holding capacity(WHC) and folding test. The optimum added levels for jelly strength of squid meat kamaboko were 4% of egg white, 5% of bovine plasma protein, 3% of gelatin and 4% for gluten. However, it is no increase that at added additives of over this concentrations were. Bovine plasma protein gave the highest jelly strength among the all additives at every concentration. Folding tests value of the optimum added levels were all B value. In this case moisture content and water holding capacity were 72.06∼73.78% and 88.53∼91.11% in jumbo squid, also flying squid were 71.91∼72.89% and 90.21∼93.25%, respectively. The additives were increased the jelly strength, hardness and water holding capacity(WHC), and these effects were eliminated by adjusting the water-content to the value of the control sample without additives.

HspBP1 Is the Negative Regulator of the Bovine Progesterone Receptor

  • Park, K.M.;Song, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.9
    • /
    • pp.1261-1267
    • /
    • 2003
  • We have investigated whether HspBP1, a Hsp70 binding protein, could have effect on the assembly of the bovine progesterone receptor (bPR) with a chaperone complex consisting of bovine Hsp90 (bHsp90), bovine Hsp70 (bHsp70), Hop, Ydj-1, and p23. The bPR, isolated in its native conformation, loses its function to interact with progesterone hormone in the absence of this protein complex. However, in the presence of bHsp90, bHsp70, Hop, p23 and Ydj-1, its function could be restored in vitro. Our findings here indicate that the inclusion of HspBP1 to five-protein system prevented the proper assembly of progesterone receptor-chaperone complex and induce the loss of bPR ability to interact with hormone. Immunoprecipitation assays of bPR with HspBP1 show that the presence of HspBP1 did not have any effect on the assembly of Ydj-1 and bHsp70 with the progesterone receptor. However, further assembly of Hsp90, Hop and p23 was completely prevented and the function of the bPR was lost. In vitro competition and protein folding assays indicated that the binding of HspBP1 to bHsp70 prevented the ternary complex formation of bHsp70, bHsp90, and Hop. These results indicate that HspBP1 is a negative regulator of the assembly of Hsp90, Hop and Hsp70, and thus, prevent the proper maturation of unliganded bPR with chaperones assembly system.

Protein Context-Dependent Hydrophobicity of Amino Acids in Protein

  • Cho, Hanul;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.163-166
    • /
    • 2016
  • Hydrophobicity is the key concept to understand the water plays in protein folding, protein aggregation, and protein-protein interaction. Traditionally, the hydrophobicity of protein is defined based on the scales of the hydrophobicity of residue, assuming that the hydrophobicity of free amino acids is maintained. Here, we explore how the hydrophobicity of constituting amino acids in protein rely on the protein context, in particular, on the total charge and secondary structures of a protein. To this end, we calculate and investigate the hydration free energy of three short proteins based on the integral-equation theory of liquids. We find that the hydration free energy of charged amino acids is significantly affected by the protein total charge and exhibits contrasting behavior depending on the protein total charge being positive or negative. We also observe that amino acids in the ${\beta}-sheets$ display more enhanced the hydrophobicity than amino acids in the loop, whereas those in the ${\alpha}-helix$ do not clearly show such a tendency. And the salt-bridge forming amino acids also exhibit increase of the hydrophobicity than that with no salt bridge. Our results provide novel insights into the hydrophobicity of amino acids, and will be valuable for rationalizing and predicting the strength of water-mediated interaction involved in the biological activity of proteins.

  • PDF

Characterization of the molten globule conformation of V26A ubiquitin by far-UV circular dichroic spectroscopy and amide hydrogen/deuterium exchange

  • Park, Soon-Ho
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • The molten globular conformation of V26A ubiquitin (valine to alanine mutation at residue 26) was studied by nuclear magnetic resonance spectroscopy in conjunction with amide hydrogen/deuterium exchange. Most of the amide protons that are involved in the native secondary structures were observed to be protected in the molten globule state with the protection factors from 1.2 to 6.7. These protection factors are about 2 to 6 orders of magnitude smaller than those of the native state. These observations indicate that V26A molten globule has native-like backbone structure with marginal stability. The comparison of amide protection factors of V26A ubiquitin molten globule state with those of initial collapsed state of the wild type ubiquitin suggests that V26A ubiquitin molten globule state is located close to unfolded state in the folding reaction coordinate. It is considered that V26A ubiquitin molten globule is useful model to study early events in protein folding reaction.