• Title/Summary/Keyword: protein films

Search Result 86, Processing Time 0.022 seconds

Physical Properties of Protein Films Containing Green Tea Extract and Its Antioxidant Effect on Fish Paste Products (녹차 추출물을 첨가한 Protein Film의 물성 및 어묵에 대한 산패 억제 효과)

  • 이세희;이명숙;박상규;배동호;하상도;송경빈
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.6
    • /
    • pp.1063-1067
    • /
    • 2004
  • To elucidate the effect of protein films containing an antioxidant on lipid oxidation of fish paste products during storage, zein and soy protein isolate (SPI) films containing green tea extract were prepared and their physical properties were examined. Tensile strength and elongation of the protein films decreased by the addition of green tea extract compared to the control. Due to the addition of green tea extract, SPI film had an increase in yellowness, but zein film had a decreased yellowness. Wrapping of fried fish paste products by the zein and SPI films containing the antioxidant retarded lipid oxidation at 2 day storage by 3.6 mg MDA/kg sample and 3.6 mg MDA/kg sample, respectively, for instant fish paste compared to the control. For processed fish paste, they decreased the degree of lipid oxidation by 1.6 mg MDA/kg sample and 0.6 mg MDA/kg sample, respectively.

Mechanical and Barrier Properties of Soybean Curd Residue Protein Films (비지 단백질로 제조한 가식성필름의 기계적 및 물질투과특성)

  • Cho, Seung-Yong;Park, Jang-Woo;Rhee, Chul
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.2
    • /
    • pp.9-16
    • /
    • 1999
  • Edible films were prepared from proteins extracted from soybean curd residue by alkaline extraction and isoelectric precipitation. Effects of film forming solution pH and plasticizers on mechanical and barrier properties of edible films were studied. films were formed within pH $7{\sim}11$ with tensile strength (TS) of $2.9{\sim}3.3$ MPa. Films produced under pH 10 had the highest TS and Elongation (E) (3.3 MPa and 60.1%) but no significant difference was observed among water vapor permeabilities (WVP) of film. Glycerol, sorbitol and its mixture (1:1, w/w) were added as plasticizers. The concentration and mixing ratio of plasticizers also affected the TS, E and WVP of films. TS of films decreased from 15.0 MPa to 2.9 MPa as plasticizer concentration increased from 0.4 to 0.8 g plasticizer/g protein. At a plasticizer concentration, the highest TS was observed when sorbitol was used whereas the highest E was measured when mixture of glycerol and sorbitol was used as plasticizer WVP of films increased as the plasticizer concentration increased. Films plasticized with glycerol showed the highest WVP among the films with the same plasticizer concentrations. Edible films prepared from soybean curd residue protein showed very low oxygen permeabilities ($29.5{\sim}61.1aL{\cdot}m/m^2{\cdot}s{\cdot}Pa$) and oil resistance at all plasticizer concentration level tested.

  • PDF

Characteristics of Soy Protein Isolate Films Plasticized by Mixtures of Crystalline and Aqueous Sorbitol or Glycerin (솔비톨 혼합물과 글리세린 가소제에 의한 분리 대두단백질 필름의 특성연구)

  • Kim Ki-Myong;Hanna Milford A.;Choi Won-Seok;Cho Sung-Hwan;Choi Sung-Gil
    • Food Science and Preservation
    • /
    • v.13 no.3
    • /
    • pp.285-291
    • /
    • 2006
  • The effects of sorbitol mixture as plasticizers on moisture sorption property (MSP), water vapor permeability (WVP), color, tensile strength (TS), elongation at break (E), and total soluble matter (TSM) of soy protein isolate (SPI) films were investigated. Two different types of sorbitols, aqueous and crystalline, were added to film-forming solutions in various ratios of crystalline to aqueous (0:1, 0.25:0.75, 0.5:0.5, 0.75:0.25, or 1:0, based on weight). In addition, the characteristics of the SPI films plasticized by sorbitol mixtures and glycerin were compared with moisture sorption rate against time. Sorbitol-plasticized films had higher in TS, but lower in WVP and E than the glycerin-plasticized films. However the properties of SPI films did not differ appreciably by the type of sorbitol added to film-forming solutions. To explain the high solubility and low WVP of sorbitol-plasticized films, cumulative amounts of moisture content gained during adsorption and lost during desorption of films were compared between sorbitol and glycerin-plasticized films. The result suggest that use of sorbitol as a plasticizer for preparing SPI films improves moisture barrier properties of the films. However the high solubility of sorbitol-plasticized films needs to be reduced for improving the functionality of SPI films in potential packaging applications.

Film-Forming Properties of Proteinaceous Fibrous Material Produced from Soybean Fermented by Bacillus natto

  • Park Sang-Kyu;Bae Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1053-1059
    • /
    • 2006
  • The effectiveness of a proteinaceous fibrous material formed during commercial fermentation of soy protein (PFSP) and cysteine addition were evaluated in order to improve on the properties of soy protein-based films. Nine types of films were prepared at pH 7, 9, and 11, with heat treatments at $70^{\circ}C\;and\;90^{\circ}C$ for 30 min, by casting 5% (w/w) PFSP aqueous solution, containing 2.25% (w/w) glycerol, on to polystyrene plates. The tensile strength (TS) of films ranged from 3.88 to 6.87 MPa. The highest puncture strength (PS) was observed with pH 7.0 films prepared from PFSP solution heated at $70^{\circ}C$ (P<0.05). Alkaline pH and temperature caused a decrease in both the TS and PS of the films. The thickness of films ranged from $58\;to\;74{\mu}m$. Water vapor permeabilities of the films decreased with increasing pH and temperature. To produce films from PFSP, pH value of 7.0 to 9.0 and heat treatment of $70^{\circ}C\;to\;90^{\circ}C$ were needed. A soluble nature of PFSP films in water might be useful for preparation of hot water-soluble pouches. Cysteine addition could be necessary to produce films with increased TS and enhanced barrier properties. The combination treatment that provided the best combination of barrier and mechanical properties was the PFSP film prepared at pH 7.0 with addition of 1% cysteine. The films were good oxygen barriers.

Defatted Soybean Meal-Based Edible Film Development (탈지 대두박 소재 가식성 생고분자 필름의 개발)

  • Lee, Hanna;Paek, Hee Jeong;Min, Sea Cheol
    • Food Engineering Progress
    • /
    • v.15 no.4
    • /
    • pp.305-310
    • /
    • 2011
  • Edible films were developed from defatted soybean meal (DSM), a byproduct from the soy product industry, investigating the effects of the concentrations of DSM and glycerol and the treatment of high pressure homogenization (HPH) on color, water vapor permeability, and tensile properties of the films. The physical properties of the developed films (DSM films) were compared to those of the films made of soy proteins isolated from the DSM. DSM films were obtained by drying film-forming solutions prepared with DSM powder, glycerol, and water and with and without HPH at 152 MPa. HPH resulted in the formation of continuous and uniform films. Water vapor permeability of the films increased with increase in the concentration of glycerol and decreased by high pressure homogenization. The increase in the glycerol concentration in the film-forming solution prepared without HPH decreased the tensile strength and elastic modulus of the films. However, this effect was not observed with the HPH-treated solution. DSM films possessed higher tensile strength and percentage elongation than the film of soy protein, implying the potential for the DSM film to be applied to food product as an edible film.

Functional and Film-forming Properties of Fractionated Barley Proteins

  • Cho, Seung-Yong;Rhee, Chul
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.889-894
    • /
    • 2009
  • Barley proteins are expected to have unique functional properties due to their high content of alcohol soluble protein, hordein. Since the barley proteins obtained by conventional isoelectric precipitation method cannot represent hordein fraction, barley proteins were fractionated to albumin, globulin, glutelin, and hordein with respect to extraction solvents. Functional properties and film-forming properties of solubility-fractionated barley proteins were investigated to explore their potential for human food ingredient and industrial usage. The 100 g of total barley protein comprised 5 g albumin, 23 g globulin, 45 g glutelin, and 27 g hordein. Water-binding capacities of barley protein isolates ranged from 140-183 mL water/100 g solid. Hordein showed the highest oil absorption capacity (136 mL oil/100 g), and glutelin showed the highest gelation property among the fractionated proteins. In general, the barley protein fractions formed brittle and weak films as indicated by low tensile strength (TS) and percent elongation at break (E) values. The salt-soluble globulin fraction produced film with the lowest TS value. Although films made from glutelin and hordein were dark-colored and had lower E values, they could be used as excellent barriers against water transmission.

Improvement of Physical Properties for Edible Films from Alaska Pollack Protein (명태 단백질로 제조한 가식성 필름의 물성 개선)

  • Mok Jong Soo;Song Ki Cheol;Kang Chang Su;Chang Soo Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.417-423
    • /
    • 2002
  • The edible films were prepared from the protein of alaska pollack, Theragra chalcogrmma. Effects of plasticizer, cross linker and laminated film on physical properties such as tensile strength (TS), elongation (E) and water vapor permeability (WVP) of films were investigated. In adding various kinds of plasticizers, TS of the films prepared with propylene glycol (PG) was the highest, and followed sorbitol, polyethylene glycol 200 (PEG 200) and glycerol. Elongation of the films prepared with glycerol was the highest, then sorbitol, PEG 200 and PG. WVP of films showed lower in order of PG, sorbitol, glycerol and PEG 200.75 decreased with the increment of plasticizer concentration, but elongation increased, The addition of both PG and PEG 200 effected weakly on elongation, so they were inadequate as plasticizer for the film. Mixtures of glycerol and sorbitol, which showed opposing both TS and elongation in the films, could control the physical properties of the films. With increasing relative humidity, TS decreased, while elongation and equilibrium moisture content increased. By adding the cross linkers such as ascorbic acid, citric acid and succinic acid, TS and m of films increased, while elongation decreased. Ascorbic acid, citric acid, succinic acid were most effective for TS at 0.2, 0.1 and $0.1\%, respectively. Laminated film with alaska pollack protein and corn zein improved TS above two times, reduced WVP about $20\~30\%$, as compared with the Elm from alaska pollack protein. Two films did not show the difference to oxygen permeability, but they showed about tenfold greater oxygen resistance than polyethylene film. Laminated film showed higher b and $\Delta$E value of color difference, lower a and L value than the film from alaska pollack protein.

Effect of biofibers addition on the structure and properties of soy protein composite films

  • Ye Eun Kim;Su Jin Kim;Yong-Il Chung;Chae Hwa, Kim;Tae Hee Kim;In Chul Um
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • Soy protein isolate (SPI) has garnered researchers' attention due to its abundance, costeffectiveness, excellent biocompatibility, hemo-compatibility, and biodegradability. However, SPI faces limitations in application due to poor processability and weak mechanical strength. Substantial efforts have been made to address these challenges. In this preliminary study, glycerol and biofibers were added to SPI to improve the mechanical properties and film forming, and glyoxal was employed to crosslink SPI molecules. The microstructure and mechanical properties of the resulting SPI/composite films were evaluated. A 15% addition of glycerol proved sufficient for good film formation. Among the biofibers, short SF microfibers were the most effective in enhancing breaking strength, while TEMPO-oxidized CNF (cellulose nanofiber) excelled among CNFs. Crosslinking with glyoxal significantly enhanced the mechanical properties, with the type of biofiber minimally affecting the mechanical properties of the crosslinked SPI composite films.

Mechanical and Water Barrier Properties of Biopolyester Films Prepared by Thermo-Compression

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.62-66
    • /
    • 2007
  • Four different biopolyester films, two aliphatic polyesters including polylactides (PLA) and poly(3-hydroxy-butyrate-co-3-hydroxyvalerate (PHBV), and two aliphatic-aromatic copolyesters including Ecoplex and Biomax, were prepared using by thermo-compression, and their tensile and water barrier properties were determined. Among the films tested, PLA film was the most transparent (T: 95.8%), strongest, and stiffest (TS, 40.98 MPa; E, 1916 MPa), however it was rather brittle. In contrast, Ecoplex film was translucent while being the most flexible and resilient (EB, 766.8%). Biomax film was semitransparent and was the most brittle film tested (EB, 0.03%). All biopolyester films were water resistant exhibiting very low water solubility (WS) values ranging from 0.0.3 to 0.36%. PHBV film showed the lowest water vapor permeability (WVP) value ($1.26{\times}10^{-11}\;g{\cdot}m/m^2{\cdot}sec{\cdot}Pa$) followed by Biomax, PLA, and Ecoflex films, respectively. The water vapor barrier properties of each film were approximately 100 times higher than those of carbohydrate or protein-based films, but about 100 times lower than those of commodity polyolefin films such as low-density polyethylene (LDPE) or polypropylene (PP).

Separation Performance and Application of Sericin Protein in Silk Degumming Solution(2) (실크 정련 세리신 단백질의 분리특성과 응용(2))

  • Cha, Chin-U;Park, In-Woo;Bae, Kie-Seo;Hong, Young-Ki;Lee, Seo-Hee;Kim, Yong-Duck
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.132-139
    • /
    • 2010
  • Sericin pulverization process was applied by freezing-thawing of sericin protein concentration solution and physicochemical properties of sericin/chitosan blended films were investigated. In sericin pulverization process by freezing-thawing method, the refrigeration storage at $4^{\circ}C$ maximized gelling between sericin molecules, which increased 10% of recovery ratio from sericin concentration solution that using ultrafiltration procedure. In physicochemical properties of sericin/chitosan blended films, the maximum load of chitosan (6.7kgf) had higher than that of sericin (1.2kgf), and the elongation of sericin and chitosan had 96% and 34%, respectively. Also FT-IR analysis of sericin/chitosan blended films showed that both sericin and chitosan films had amide I peak (N-H bond) in $1,521cm^{-1}$ and amide II peak (C=O bond) in $1,630cm^{-1}$. In addition, it could confirm compatibility between both materials as indicated by the decrease in the amide I peak's absorption value as chitosan content increases.