• Title/Summary/Keyword: protein expression and purification

Search Result 262, Processing Time 0.064 seconds

Expression and Purification of the Helicase-like Subdomains, H1 and H23, of Reverse Gyrase from A. fulgidus for Heteronuclear NMR study

  • Kwon, Mun-Young;Seo, Yeo-Jin;Lee, Yeon-Mi;Lee, Ae-Ree;Lee, Joon-Hwa
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.2
    • /
    • pp.95-98
    • /
    • 2015
  • Reverse gyrase is a hyperthermophile specific protein which introduces positive supercoils into DNA molecules. Reverse gyrase consists of an N-terminal helicase-like domain and a C-terminal topoisomerase domain. The helicase-like domain shares the three-dimensional structure with two tandem RecA-folds (H1 and H2), in which the subdomain H2 is interrupted by the latch domain (H3). To understand the physical property of the hyperthermophile-specific protein, two subdomains af_H1 and af_H23 have been cloned into E. coli expression vector, pET28a. The $^{15}N$-labeled af_H1 and af_H23 proteins were expressed and purified for heteronuclear NMR study. The af_H1 protein exhibits the well-dispersion of amide signals in its $^1H/^{15}N$-HSQC spectra and thus further NMR study continues to be progressed.

Purification and Characterization of Cop, a Protein Involved in the Copy Number Control of Plasmid pE194

  • Kwak, Jin-Hwan;Kim, Jung-Ho;Kim, Mu-Yong;Choi, Eung-Chil
    • Archives of Pharmacal Research
    • /
    • v.21 no.3
    • /
    • pp.291-297
    • /
    • 1998
  • Cop protein has been overexpressed in Escherichia coli using a T7 RNA polymerase system. Purification to apparent homogeneity was achieved by the sequential chromatography on ion exchange, affinity chromatography, and reverse phase high performance liquid chromatography system. The molecular weight of the purified Cop was estimated as 6.1 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). But the molecular mass of the native state Cop was shown to be 19 kDa by an analytical high performance size exclusion chromatography, suggesting a trimer-like structure in 50 mM Tris-HCI buffer (pH 7.5) containing 100 mM NaCl. Cop protein Was calculated to contain $39.1% {\alpha}-helix, 16.8% {\beta}-sheet$, 17.4% turn, and 26.8% random structure. The DNA binding property of Cop protein expressed in E. coli Was preserved during the expression and purification process. The isoelectric point of Cop was determined to be 9.0. The results of amino acid composition analysis and N-terminal amino acid sequencing of Cop showed that it has the same amino acid composition and N-terminal amino acid sequence as those deduced from its DNA sequence analysis, except for the partial removal of N-terminal methionine residue by methionyl-aminopeptidase in E. coli.

  • PDF

Purification and Characterization of a Regulatory Protein XyIR in the D-Xylose Operon from Escherichia coli

  • Shin, Jae-Ho;Roh, Dong-Hyun;Heo, Gun-Young;Joo, Gil-Jae;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1002-1010
    • /
    • 2001
  • The D-xylose operon in Escherichia coli is known to be regulated by a transcriptional activator protein, XyIR, which is responsible for the expression of both xylAB and xylFGH gene clusters. The XyIR was purified to homogeneity by using the maltose binding protein fusion expression and purification systems involving two chromatography steps. The purified XyIR protein was composed of two subunits of 45 kDa, which was determined by both sodium dodecyl sulfate polyacrylamide gel electrophoresis and gel filtration. The purified XyIR was specifically bounded to the xylA promoter, regardless of adding xylose to the reaction mixture, but binding of XylR was specifically bounded to the xylA promoter, regardless of adding xylose to the reaction mixture, but binding of XylR to the xylA promoter was enhanced by adding xylose. The enhanced binding ability of XyIR in the presence of xylose was not diminished by adding glucose. The presumed XyIR binding site is located between 120 bp to 100 bp upstream the xylA initiation codon.

  • PDF

An Efficient System for the Expression and Purification of Yeast Geranylgeranyl Protein Transferase Type I

  • Kim, Hyun-Kyung;Kim, Young-Ah;Yang, Chul-Hak
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.77-82
    • /
    • 1998
  • To purify the geranylgeranyl protein transferase type I (GGPT-I) efficiently, a gene expression system using the pGEX-4T-1 vector was constructed. The cal1 gene, encoding the ${\beta}$ subunit of GGPT-I, was subcloned into the pGEX-4T-1 vector and co-transformed into E. coli cells harboring the ram2 gene, the ${\alpha}$ subunit gene of GGPT-I. GGPT-I was highly expressed as a fusion protein with glutathione S-transferase (GST) in E. coli, purified to homogeneity by glutathione-agarose affinity chromatography, and the GST moiety was excised by thrombin treatment. The purified yeast GGPT-I showed a dose-dependent increase in the transferase activity, and its apparent $K_m$ value for an undecapeptide fused with GST (GST-PEP) was $0.66\;{\mu}M$ and the apparent value for geranylgeranyl pyrophosphate (GGPP) was $0.071\;{\mu}M$.

  • PDF

Expression and Purification of Recombinant Active Prostate-Specific Antigen from Escherichia coli

  • Jeong, Su-Jin;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.840-846
    • /
    • 2007
  • Human prostate-specific antigen(PSA), a 33 kDa serine protease with comprehensive homology to glandular kallikrein, is secreted from prostatic tissue into the seminal fluid and enters into the circulation. The level of PSA increases in the serum of patients with prostatic cancer and hence is widely employed as a marker of the disease status. In particular, an enzymatically active PSA that is a form cleaved at the N-terminal seven-amino-acids prosequence, APLILSR, of proPSA may play an important roll in the progression of prostate cancer. Thus, the presence of the active form would selectively discriminate the cancer from benign prostatic hyperplasia. In this study, we developed a convenient purification method for the acquisition of active PSA and proPSA. Recombinant proPSA and active PSA were expressed directly in Escherichia coli, easily and efficiently isolated from inclusion bodies, refolded, and purified. Moreover, the enzymatic activity of the recombinant active PSA was confirmed as serine protease using chromogenic chymotrypsin substrate. This purified active PSA could be further applied to scrutinize the biological or conformational characteristics of the protein and to develop specific diagnostic and/or therapeutic agents against prostate cancer.

Assessment of the Reliability of Protein-Protein Interactions Using Protein Localization and Gene Expression Data

  • Lee, Hyun-Ju;Deng, Minghua;Sun, Fengzhu;Chen, Ting
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.313-318
    • /
    • 2005
  • Estimating the reliability of protein-protein interaction data sets obtained by high-throughput technologies such as yeast two-hybrid assays and mass spectrometry is of great importance. We develop a maximum likelihood estimation method that uses both protein localization and gene expression data to estimate the reliability of protein interaction data sets. By integrating protein localization data and gene expression data, we can obtain more accurate estimates of the reliability of various interaction data sets. We apply the method to protein physical interaction data sets and protein complex data sets. The reliability of the yeast two-hybrid interactions by Ito et al. (2001) is 27%, and that by Uetz et at.(2000) is 68%. The reliability of the protein complex data sets using tandem affinity purification-mass spec-trometry (TAP) by Gavin et at. (2002) is 45%, and that using high-throughput mass spectrometric protein complex identification (HMS-PCI) by Ho et al. (2002) is 20%. The method is general and can be applied to analyze any protein interaction data sets.

  • PDF

Simple Purification of shiga Toxin B Chain from Recombinant Escherichia coli

  • Oh, Young-Phil;Jeong, Seong-Tae;Kim, Dae-Weon;Kim, El-Chae;Yoon, Ki-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.6
    • /
    • pp.986-988
    • /
    • 2002
  • A plasmid expression vector of pEStxl encoding a mature form of the B chain of the Shiga toxin was constructed without a signal peptide under the control of an inducible n promoter. The encoded protein was purified to 90% by simple heat treatment, and then further purified to 95% by Phenyl-Sepharose and DEAE-Sepharose chromatographies, all in a single day. Accordingly, this expression system and heat treatment could facilitate the rapid purification of gram-scale amounts of the Shiga toxin B subunit from recombinant Escherichia coli cells.

Expression and Purification of a Recombinant scFv towards the Exotoxin of the Pathogen, Burkholderia pseudomallei

  • Lim, Kue-Peng;Li, Hong-Bin;Sheila Nathan
    • Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.126-132
    • /
    • 2004
  • A single chain variable fragment (scFv) specific towards B. pseudomallei exotoxin had previously been generated from an existing hybridoma cell line (6E6AF83B) and cloned into the phage display vector pComb3H. In this study, the scFv was subcloned into the pComb3X vector to facilitate the detection and purification of expressed antibodies. Detection was facilitated by the presence of a hemagglutinin (HA) tag, and purification was facilitated by the presence of a histidine tag. The culture was grown at 30$^{\circ}C$ until log phase was achieved and then induced with 1 mM IPTG in the absence of any additional carbon source. Induction was continued at 30$^{\circ}C$ for five h. The scFv was discerned by dual processes-direct enzyme-linked immunosorbent assays (ELISA), and Western blotting. When compared to E. coli strains ER2537 and HB2151, scFv expression was observed to be highest in the E. coli strain Topl0F'. The expressed scFv protein was purified via nickel-mediated affinity chromatography and results indicated that two proteins a 52 kDa protein, and a 30 kDa protein were co-purified. These antibodies, when blotted against immobilized exotoxin, exhibited significant specificity towards the exotoxin, com-pared to other B. pseudomallei antigens. Thus, these antibodies should serve as suitable reagents for future affinity purification of the exotoxin.

Over-expression of Chlamydia psittaci MOMP in Escherichia coli and its purification (대장균에서 Chlamydia psittaci MOMP 유전자의 과발현과 순수분리)

  • Ha, Jung-Soon;Lee, Do-Bu;Han, Sang-Hoon;Lim, Yoon-Kyu;Yoon, Byoung-Su
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.1
    • /
    • pp.13-19
    • /
    • 2006
  • Generally known psittacosis or ornithosis is a disease of birds caused by the bacterium Chlamydia psittaci. Humans are accidential hosts and are most commonly infected from avian sources. It raises hepatitis or neurosis. As major outer membrane protein (MOMP) of Chlamydia psittaci has been known to play a role in the avoidance of host immune defenses, research on developing a Chlamydia vaccine has focused on the MOMP. In this study, the gene encoding the major outer membrane protein (MOMP) of the Chlamydia psittaci strain 6BC was cloned and expressed in Escherichia coli strain M-15. The recombinant DNA was cloned by fusion prokaryotic expression vector pQE30-GFPII. Expression of the recombinant protein was performed in E. coli and was induced by IPTG. The size of expressed recombinant protein is 74.220 kDa (MOMP, 43.260 kDa; GFP expression region, 30 kDa; $6{\times}His$ tag, 960Da). This protein was purified by using his-tagging-inclusion body. Recombinant protein was reconfirmed through ELISA test and western blot with antibody against pQE30-GFPII. It will be useful antibody development.