• 제목/요약/키워드: protein dynamics

검색결과 237건 처리시간 0.022초

흰쥐 대뇌 피질 신경세포의 축삭에서 Drp1 의존적 미토콘드리아의 분열 (Evidence for the Drp1-dependent Mitochondrial Fission in the Axon of the Rat Cerebral Cortex Neurons)

  • 조봉기;이승복;선웅;김영화
    • Applied Microscopy
    • /
    • 제41권4호
    • /
    • pp.249-255
    • /
    • 2011
  • 신경세포는 생존 및 정상적인 기능을 위하여 다량의 에너지를 소비하므로, 미토콘드리아의 기능이 매우 중요하다. 미토콘드리아는 신경세포 내에서 신경돌기를 따라 이동하기도 하고, 세포내 여러 상황에 따라 접합과 절단을 반복하면서 그 분포와 형태가 역동적으로 변화한다. 역동적인 미토콘드리아의 형태 변화는 주로 GTPase 단백질인 Dynamin-related protein-1 (Drp1)에 의한 절단에 의해 조절되는 것으로 알려져 있다. 그러나, 중추신경계 신경세포에서의 미토콘드리아 분포 및 형태 변화 조절에 대해서는 비교적 연구가 미흡한 실정이다. 이 연구의 저자들은 미토콘드리아에 선택적으로 표적화되는 DsRed-mito 플라스미드를 일차 배양한 대뇌겉질 신경세포에 유전자 도입하여, 가지돌기 및 축삭에 분포하는 미토콘드리아의 길이와 역동성을 분석하였다. 흥미롭게도, 축삭 말단 부위에 분포하는 미토콘드리아의 길이가 세포체 근처의 축삭에 분포하는 미토콘드리아에 비하여 유의미하게 짧았다. 또한 Drp1 단백질이 가지돌기와 축삭에 다량 분포하며, 형광현미경하에서 이뤄진 실시간 촬영을 통해 축삭내에서 미토콘드리아의 절단이 활발하게 나타나는 것을 관찰하였다. 이를 통해, 축삭 말단 미토콘드리아의 길이 감소는 축삭 내 분포하는 Drp1 단백질의 활성에 의한 것으로 생각할 수 있었다. 위 가설을 검증하기 위하여, Drp1의 우성음성돌연변이 단백질을 신경세포에 유전자 도입하여 내재적 Drp1의 활성을 억제한 결과, 축삭 내 미토콘드리아 길이의 유의미한 증가가 관찰되었다. 이러한 결과들을 종합할 때, 대뇌겉질 신경세포에서 미토콘드리아의 절단은 축삭 내에서 지엽적으로도 진행되며, 이에 의하여 축삭내 위치에 따른 미토콘드리아의 길이 변화가 조절되는 것으로 생각되었다.

생물정보학을 이용한 연체동물의 NLS (Nuclear Localization Signals) 포함 단백질의 분석 (Bioinformatic Analysis of NLS (Nuclear Localization Signals)-containing Proteins from Mollusks)

  • 이용석;강세원;조용훈;곽희철;채성화;최상행;안인영;박홍석;한연수;고원규
    • 한국패류학회지
    • /
    • 제22권2호
    • /
    • pp.109-113
    • /
    • 2006
  • 연체동물 유래 아미노산 서열 22,138 개에서 NLS가 예측되는 아미노산 서열은 266 개였으며 이는 연체동물 전체 아미노산 중 1.2% 정도였다. 또한 현재 등재되어 있는 연체동물 8,314 종 중 NLS를 포함한 아미노산이 밝혀진 생물은 60여종에 불과 하였다. 현재 알려진 연체동물 서열 중에는 두족 강의 경우가 NLS를 포함한 아미노산이 많을 것으로 예측되었다.

  • PDF

Small molecule natural compound agonist of SIRT3 as a therapeutic target for the treatment of intervertebral disc degeneration

  • Wang, Jianle;Nisar, Majid;Huang, Chongan;Pan, Xiangxiang;Lin, Dongdong;Zheng, Gang;Jin, Haiming;Chen, Deheng;Tian, Naifeng;Huang, Qianyu;Duan, Yue;Yan, Yingzhao;Wang, Ke;Wu, Congcong;Hu, Jianing;Zhang, Xiaolei;Wang, Xiangyang
    • Experimental and Molecular Medicine
    • /
    • 제50권11호
    • /
    • pp.5.1-5.14
    • /
    • 2018
  • Oxidative stress-induced mitochondrial dysfunction is implicated in the pathogenesis of intervertebral disc degeneration (IVDD). Sirtuin 3 (SIRT3), a sirtuin family protein located in mitochondria, is essential for mitochondrial homeostasis; however, the role of SIRT3 in the process of IVDD has remained elusive. Here, we explored the expression of SIRT3 in IVDD in vivo and in vitro; we also explored the role of SIRT3 in senescence, apoptosis, and mitochondrial homeostasis under oxidative stress. We subsequently activated SIRT3 using honokiol to evaluate its therapeutic potential for IVDD. We assessed SIRT3 expression in degenerative nucleus pulposus (NP) tissues and oxidative stress-induced nucleus pulposus cells (NPCs). SIRT3 was knocked down by lentivirus and activated by honokiol to determine its role in oxidative stress-induced NPCs. The mechanism by which honokiol affected SIRT3 regulation was investigated in vitro, and the therapeutic potential of honokiol was assessed in vitro and in vivo. We found that the expression of SIRT3 decreased with IVDD, and SIRT3 knockdown reduced the tolerance of NPCs to oxidative stress. Honokiol ($10{\mu}M$) improved the viability of NPCs under oxidative stress and promoted their properties of anti-oxidation, mitochondrial dynamics and mitophagy in a SIRT3-dependent manner. Furthermore, honokiol activated SIRT3 through the AMPK-PGC-$1{\alpha}$ signaling pathway. Moreover, honokiol treatment ameliorated IVDD in rats. Our study indicated that SIRT3 is involved in IVDD and showed the potential of the SIRT3 agonist honokiol for the treatment of IVDD.

Ginsenoside Ro, an oleanolic saponin of Panax ginseng, exerts anti-inflammatory effect by direct inhibiting toll like receptor 4 signaling pathway

  • Xu, Hong-Lin;Chen, Guang-Hong;Wu, Yu-Ting;Xie, Ling-Peng;Tan, Zhang-Bin;Liu, Bin;Fan, Hui-Jie;Chen, Hong-Mei;Huang, Gui-Qiong;Liu, Min;Zhou, Ying-Chun
    • Journal of Ginseng Research
    • /
    • 제46권1호
    • /
    • pp.156-166
    • /
    • 2022
  • Background: Panax ginseng Meyer (P. ginseng), a herb distributed in Korea, China and Japan, exerts benefits on diverse inflammatory conditions. However, the underlying mechanism and active ingredients remains largely unclear. Herein, we aimed to explore the active ingredients of P. ginseng against inflammation and elucidate underlying mechanisms. Methods: Inflammation model was constructed by lipopolysaccharide (LPS) in C57BL/6 mice and RAW264.7 macrophages. Molecular docking, molecular dynamics, surface plasmon resonance imaging (SPRi) and immunofluorescence were utilized to predict active component. Results: P. ginseng significantly inhibited LPS-induced lung injury and the expression of proinflammatory factors, including TNF-α, IL-6 and IL-1β. Additionally, P. ginseng blocked fluorescencelabeled LPS (LPS488) binding to the membranes of RAW264.7 macrophages, the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). Furthermore, molecular docking demonstrated that ginsenoside Ro (GRo) docked into the LPS binding site of toll like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD2) complex. Molecular dynamic simulations showed that the MD2-GRo binding conformation was stable. SPRi demonstrated an excellent interaction between TLR4/ MD2 complex and GRo (KD value of 1.16 × 10-9 M). GRo significantly inhibited LPS488 binding to cell membranes. Further studies showed that GRo markedly suppressed LPS-triggered lung injury, the transcription and secretion levels of TNF-α, IL-6 and IL-1β. Moreover, the phosphorylation of NF-κB and MAPKs as well as the p65 subunit nuclear translocation were inhibited by GRo dose-dependently. Conclusion: Our results suggest that GRo exerts anti-inflammation actions by direct inhibition of TLR4 signaling pathway.

지방 저장 식물의 퍼옥시좀 생성과 발달 (Development and Biogenesis of Peroxisome in Oil-seed Plants)

  • 김대재
    • 생명과학회지
    • /
    • 제33권8호
    • /
    • pp.651-662
    • /
    • 2023
  • 마이크로바디로 알려진 퍼옥시좀은 대부분의 진핵세포에서 흔히 발견되는 형태학적으로 유사한 세포내 소기관의 한 종류이다. 크기는 직경이 0.2~1.8 ㎛이고 단일 막으로 싸여 있다. 매질은 일반적으로 미세한 입자이지만 때로는 결정체 또는 섬유질의 형태가 관찰된다. 이들은 특징적으로 과산화수소(H2O2)를 생성하는 산화효소를 가지고 있으며 효소 카탈레이스를 함유하여 세포 소기관 내에서 생성되는 유독한 H2O2를 제거한다. 퍼옥시좀은 형태학적으로나 물질대사의 측면에서 진핵세포의 세포내 소기관으로써 대단히 역동적이다. 특히, 식물의 퍼옥시 좀은 β-산화, 글라이옥실산 회로 및 광호흡 등을 포함한 수많은 대사 과정과 관련이 있다. 또한, 식물 퍼옥시좀은 중요한 식물 호르몬인 옥신, 살리실산 및 자스몬산의 합성과 스트레스에 대한 반응 및 발달에 관여한다. 지난 20년 동안 진핵생물의 퍼옥시좀 발생에 관한 연구는 동물과 효모에서 상당한 진전을 이루었다. 정교한 분자생물학 기술의 발전과 유전체학의 광범위 활용으로 대부분의 퍼옥시좀 관련 유전자와 단백질(peroxin, PEX)이 확인되었다. 또한, 최근에 단백체 연구의 적용은 퍼옥시좀 단백질의 표적화, 조절 및 분해에 대한 이해와 함께 식물 퍼옥시좀의 발생에 대한 기초 정보를 얻을 수 있게 되었다. 이와 같은 퍼옥시좀 발달에 관한 연구에 커다란 진전에도 불구하고, 퍼옥시좀이 ER에서 유래하여 조립되고 분열하는 과정에 대하여 여전히 많은 의문이 남아 있다. 퍼옥시좀은 식물 발달의 여러 측면에서 역동적인 역할을 수행하며, 이 논문에서는 식물 퍼옥시좀의 기능, 발생 및 역동성에 대한 이해를 위하여 그 동안의 연구 동향에 중점을 두었다.

The Effect of Methanol on the Structural Parameters of Neuronal Membrane Lipid Bilayers

  • Joo, Hyung-Jin;Ahn, Shin-Ho;Lee, Hang-Rae;Jung, Sung-Woo;Choi, Chang-Won;Kim, Min-Seok;Bae, Moon-Kyoung;Chung, In-Kyo;Bae, Soo-Kyoung;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제16권4호
    • /
    • pp.255-264
    • /
    • 2012
  • The structures of the intact synaptosomal plasma membrane vesicles (SPMVs) isolated from bovine cerebral cortexs, and the outer and the inner monolayer separately, were evaluated with 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1,3-di(1-pyrenyl)propane (Py-3-Py) as fluorescent reporters and trinitrophenyl groups as quenching agents. The methanol increased bulk rotational and lateral mobilities of SPMVs lipid bilayers. The methanol increased the rotational and lateral mobilities of the outer monolayers more than of the inner monolayers. n-(9-Anthroyloxy)stearic acid (n-AS) were used to evaluate the effect of the methanol on the rotational mobility at the 16, 12, 9, 6, and 2 position of aliphatic chains present in phospholipids of the SPMVs outer monolayers. The methanol decreased the anisotropy of the 16-(9-anthroyloxy)palmitic acid (16-AP), 12-(9-anthroyloxy)stearic acid (12-AS), 9-(9-anthroyloxy)stearic acid (9-AS), and 6-(9-anthroyloxy)stearic acid (6-AS) in the SPMVs outer monolayer but it increased the anisotropy of 2-(9-anthroyloxy)stearic acid (2-AS) in the monolayers. The magnitude of the increased rotational mobility by the methanol was in the order at the position of 16, 12, 9, and 6 of aliphatic chains in phospholipids of the outer monolayers. Furthermore, the methanol increased annular lipid fluidity and also caused membrane proteins to cluster. The important finding is that was far greater increase by methanol in annular lipid fluidity than increase in lateral and rotational mobilities by the methanol. Methanol alters the stereo or dynamics of the proteins in the lipid bilayers by combining with lipids, especially with the annular lipids. In conclusion, the present data suggest that methanol, in additions to its direct interaction with proteins, concurrently interacts with membrane lipids, fluidizing the membrane, and thus inducing conformational changes of proteins known to be intimately associated with membranes lipids.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF