• Title/Summary/Keyword: protein drug

Search Result 1,344, Processing Time 0.024 seconds

A management Technique for Protein Version Information based on Local Sequence Alignment and Trigger (로컬 서열 정렬과 트리거 기반의 단백질 버전 정보 관리 기법)

  • Jung Kwang-Su;Park Sung-Hee;Ryu Keun-Ho
    • The KIPS Transactions:PartD
    • /
    • v.12D no.1 s.97
    • /
    • pp.51-62
    • /
    • 2005
  • After figuring out the function of an amino acid sequence, we can infer the function of the other amino acids that have similar sequence composition. Besides, it is possible that we alter protein whose function we know, into useful protein using genetic engineering method. In this process. an original protein amino sequence produces various protein sequences that have different sequence composition. Here, a systematic technique is needed to manage protein version sequences and reference data of those sequences. Thus, in this paper we proposed a technique of managing protein version sequences based on local sequence alignment and a technique of managing protein historical reference data using Trigger This method automatically determines the similarity between an original sequence and each version sequence while the protein version sequences are stored into database. When this technique is employed, the storage space that stores protein sequences is also reduced. After storing the historical information of protein and analyzing the change of protein sequence, we expect that a new useful protein and drug are able to be discovered based on analysis of version sequence.

A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

  • Lee, Yura;Bae, Kyoung Jun;Chon, Hae Jung;Kim, Seong Hwan;Kim, Soon Ae;Kim, Jiyeon
    • Molecules and Cells
    • /
    • v.39 no.5
    • /
    • pp.389-394
    • /
    • 2016
  • Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders.

Enhanced Antigen Delivery Systems Using Biodegradable PLGA Microspheres for Single Step Immunization

  • Cho, Seong-Wan;Kim, Young-Kwon
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.443-450
    • /
    • 2006
  • To demonstrate their possibilities as an enhanced vaccine delivery system, protein-loaded Poly lactide glycolide copolymer (PLGA) microspheres were prepared with different physical characteristics. Ethyl acetate (EA) solvent extraction process was employed to prepare microspheres and the effects of process parameters on drug release properties were evaluated. The biodeuadability of microspheres was also evaluated by the pH change and GPC (Gel permeation chromatography). Primary IgG antibody responses in BALB/c mice were compared with protein saline solutions as negative controls and adsorbed alum suspensions as positive controls after single subcutaneous injection for in vivo studies. The microspheres showed a erosion with a highly porous structure and did not keep their spherical shape at 45 days and this result could be confirmed by GPC. In vitro release of proteinous drug showed initial burst effect in all batches of microspheres, followed by gradual release over the next 4 weeks. PLGA microspheres were degraded until 45 days and the secondary structure of OVA was not affected by the preparation method. Enzyme-linked immunosorbent assays demonstrated that the single subcutaneous administrations of OVA-loaded PLGA microspheres induced enhanced serum IgG antibody response in comparison to negative and positive controls. These results demonstrated that microspheres providing the controlled release of antigens might be useful in advanced vaccine formulations for the parenteral carrier system.

  • PDF

Molecular Docking Studies of Wolbachia Endosymbiont of Brugia Malayi's Carbonic Anhydrase Using Coumarin-chromene Derivatives Towards Designing Anti-filarial Agents

  • Malathy, P.;Jagadeesan, G.;Gunasekaran, K.;Aravindhan, S.
    • Journal of Integrative Natural Science
    • /
    • v.9 no.4
    • /
    • pp.268-274
    • /
    • 2016
  • Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Hence the enzyme carbonic anhydrase from wolbachia endosymbiont of Brugia malayi (wBm) which is responsible for the reversible interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa) is chosen as the drug target for filariasis. This enzyme is thought to play critical functions in bacteria by involving in various steps of their life cycle which are important for survival, The 3D structure of wBm carbonic anhydrase is predicted by selecting a suitable template using the similarity search tool, BLAST. The BLAST results shows a hexapeptide transferase family protein from Anaplasma phagocytophilum (PDB ID: 3IXC) having 77% similarity and 54% identity with wBm carbonic anhydrase. Hence the above enzyme is chosen as the template and the 3D structure of carbonic anhydrase is predicted by the tool Modeller9v7. Since the three dimensional structure of carbonic anhydrase from wolbachia endosymbiont of Brugia malayi has not yet solved, attempts were made to predict this protein. The predicted structure is validated and also molecular docking studies are carried out with the suitable inhibitors that have been solved experimentally.

Protective effect of ginsenoside Rh3 against anticancer drug-induced apoptosis in LLC-PK1 kidney cells

  • Lee, Hye Lim;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.227-231
    • /
    • 2017
  • Background: Ginsenosides are active components of Panax ginseng that exert various health benefits including kidney protection effect. The medicinal activity of ginsenosides can be enhanced by modulating their stereospecificity by heat processing. Ginsenosides Rk2 and Rh3 represent positional isomers of the double bond at C-20(21) or C-20(22). Methods: The present study investigated the kidney-protective effects of ginsenosides Rk2 and Rh3 against cisplatin, a platinum based anticancer drug, induced apoptotic damage in renal proximal LLC-PK1 cells. Results: As a result, ginsenoside Rh3 shows a stronger protective effect than that shown by Rk2. Cisplatin-induced elevated protein levels of phosphorylated c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), p38, and cleaved caspase-3 decreased after cotreatment with ginsenoside Rh3. The increase in the percentage of apoptotic LLC-PK1 cells induced by cisplatin treatment also significantly reduced after cotreatment with ginsenoside Rh3. Conclusion: These results demonstrate that inhibition of the JNK and ERK mitogen-activated protein kinase signaling cascade plays a critical role in mediating the renoprotective effect of ginsenoside Rh3.

An Extract from Hydrolyzed Normal Human Urine which Induces Drug Binding Defects (정상인뇨의 가수분해에 의한 의약품결합 저해유도인자의 추출)

  • 장판섭
    • YAKHAK HOEJI
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 1982
  • Uremia is associated with defective protein binding of weakly acidic drugs, whereas the protein binding of basic drugs tends to be normal. The exact chemical nature of compound(s) and mechanism for these changes as yet is unknown, and has not been defined. Organic solvent extraction of pooled normal human urine following hydrolysis by hydrochloric acid produced an extract, which when added to normal human serum, was capable of inducing binding defects similar to those in uremia. Binding defects were observed with the weakly acidic drugs such as nafcillin, salicylate, sulfamethoxazole and phenytoin while the binding of the basic drugs such as trimethoprim and quinidine were unaffected. The binding defects induced by the hydrolyzed urine extract could readily be corrected by same organic solvent extraction of acidified serum and the defects could be transferred to the normal human serum using the organic solvent layer at the physiologic pH (7.4). Followed by reacidification ind extraction of the binding defects induced serum with the same solvent, separated several fractions were obtained on thin-layer chromatography. One of these fractions could reinduce the binding defects and this factor(s) is apparently weakly acidic compounds and tightly bound to serum at physiologic pH, but extractable at acidic pH, and its molecular weight range is approximately 500 or less similar to those seen in uremia. These findings strongly support the hypothesis that the drug binding defect in uremia is due to the accumulation of endogenous metabolic products which arc normally excreted by the kidneys but accumulate in renal failure.

  • PDF

Protein Binding Study of S-Ibuprofen Using High-Performance Frontal Analysis

  • Jin, Longmei;Choi, Du-Young;Liu, Haiyan;Row, Kyung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.136-138
    • /
    • 2005
  • High-performance frontal analysis (HPFA) was used for the determination of the binding constant of Sibuprofen to human serum albumin (HSA). This experiment was based on an Inertsil 100 Diol 5 column and sodium phosphate buffer (pH 7.4 and ionic strength of 0.17) as the mobile phase. The mixture of S-ibuprofen and HSA (70 $\mu$M) solution were directly injected into the HPFA column. An injection volume of 200 $\mu$L and a “estricted injection”method were applied to ensure the drug to be eluted as a zonal peak with a plateau. The unbound drug concentration was calculated from the peak height of the zonal peak. Scatchard analysis was used for evaluation of the binding constant (K) and binding affinity (nK) of S-ibuprofen to HSA, and the results were K = 2.833 ${\times}$ 10$^4$ [L mol$^{-1}$], nK = 4.935 ${\times}$ 10$^4$ [L mol$^{-1}$], respectively.

Pharmacokinetic Changes in Drugs during Protein-Calorie Malnutrition: Correlation between Drug Metabolism and Hepatic Microsomal Cytochrome P450 Isozymes

  • Lee, Joo-Hyun;Suh, Ok-Kyung;Lee, Myung-Gull
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.693-712
    • /
    • 2004
  • The rats with protein-calorie malnutrition (PCM, 5% casein diet for a period of 4-week) were reported to exhibit 60 and 80% suppression in the hepatic microsomal cytochrome P450 (CYP) 1 A2 and CYP2C11 levels, respectively, and 40-50% decreases in CYP2E1 and CYP3A 1/2 levels compared to control (23% casein diet for a period of 4-week) based on Western blot analysis. In addition, Northern blot analysis showed that CYP1 A2, CYP2E1, CYP2C11, and CYP3A1/2 mRNAs decreased in the state of PCM as well. Hence, pharmacokinetic changes of the drugs in rats with PCM [especially the area under the plasma concentration-time curve from time zero to time infinity (AUC) changes of metabolite(s)] reported from literatures were tried to explain in terms of CYP isozyme changes in the rats. Otherwise, the time-averaged nonrenal clearance ($CL_{NR}$) of parent drug was compared. Pharmacokinetic changes of the drugs in other types of malnutritional state, such as kwashiorkor and marasmus, in both human and animal models were also compared. The drugs reviewed are as follows: diuretics, antibiotics, anticancer agents, antiepileptics, antiarrythmics, analgesics, xanthines, antimalarials, and miscellaneous.

Discovery of Anticancer Activity of Amentoflavone on Esophageal Squamous Cell Carcinoma: Bioinformatics, Structure-Based Virtual Screening, and Biological Evaluation

  • Chen, Lei;Fang, Bo;Qiao, Liman;Zheng, Yihui
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.718-729
    • /
    • 2022
  • Esophageal squamous cell carcinoma (ESCC) is the most common primary esophageal malignancy with poor prognosis. Here, due to the necessity for exploring potential therapies against ESCC, we obtained the gene expression data on ESCC from the TCGA and GEO databases. Venn diagram analysis was applied to identify common targets. The protein-protein interaction network was constructed by Cytoscape software, and the hub targets were extracted from the network via cytoHubba. The potential hub nodes as drug targets were found by pharmacophore-based virtual screening and molecular modeling, and the antitumor activity was evaluated through in vitro studies. A total of 364 differentially expressed genes (DEGs) in ESCC were identified. Pathway enrichment analyses suggested that most DEGs were mainly involved in the cell cycle. Three hub targets were retrieved, including CENPF, CCNA2 (cyclin A), and CCNB1 (cyclin B1), which were highly expressed in esophageal cancer and associated with prognosis. Moreover, amentoflavone, a promising drug candidate found by pharmacophore-based virtual screening, showed antiproliferative and proapoptotic effects and induced G1 in esophageal squamous carcinoma cells. Taken together, our findings suggested that amentoflavone could be a potential cell cycle inhibitor targeting cyclin B1, and is therefore expected to serve as a great therapeutic agent for treating esophageal squamous cell carcinoma.

Study of the Amount and Share of Drug Cost in the Total Medical Fee under Medical Insurance Scheme (의료보험(醫療保險) 의약품(醫藥品)의 요양취급기관(療養取扱機關) 종별(種別), 약효군별(藥效群別), 상병별(傷病別) 사용(使用)에 관(關)한 조사연구(調査硏究))

  • Lee, Chu-Won;Hahn, Oh-Surk
    • Journal of Preventive Medicine and Public Health
    • /
    • v.22 no.2 s.26
    • /
    • pp.223-235
    • /
    • 1989
  • To grasp the idea about how drugs are used under Medical Insurance Scheme, the amount and share of drug cost in the total medical fee have been reviewed and analyzed for different types of patients (in-patient out-patient), medical institutions and frequently seen diseases and following findings were revealed. In 1986, drug cost took 32.78% of total medical fee for in-patients and 32.98% for out-patients averaged over 30% share as a whole. When drug cost per case in 1980 be indexed to 100, it has shown steady growth to become 200 for in-patients and about 150 for out-patients in 1986. The contribution of drug cost to the total medical fee is, regardless of patient type-in-patients and out-patients, the highest in University hospitals and followed by General hospitals, Hospitals and Clinics in decending order That for the most frequent 10 diseases came out the highest,79 a with the essential benign hypertension of out-patients in the General hospitals, 61% for the gastric ulcer of out-patients in Hospitals and 33% for the female genital diseases of out-patients in Clinics. The drug cost of oral formula was contributed the most, 7.93% by cardiovascular agents followed by hepatic detoxicants(5.47%) and out-patients(4.93%), and that of injectable formula was contributed the most by antibiotics(24.17%), followed by protein amino-acid preparations(6.19%). The order of drug usage by specialty for the in-patients was the highest with internal medicine followed by general surgery and E.N.T, and that for the out-parients was in the order of Internal medicine, neuropsychology and Ob/Gy. This study revealed that the drug dependency was characteristically different to specialty. In view of the fact that drug cost on average exceeds over 30% of total medical fee, proper drug administration appears to be vitally important for the stabilization of the financial standing of the Medical Insurance Scheme. As a consequence, drug usage guidelines including antibiotics usage shall be established first of all and the voluntary participation for the regulation of drug usage and propagation of the guidelines to medical institutions are strongly coerced.

  • PDF