• 제목/요약/키워드: protein drug

검색결과 1,344건 처리시간 0.025초

Preparation of Protein-coated Cationic Liposomes Containing Doxorubicin and Their Binding Property of Blood Plasma Protein (독소루비신을 함유하고 단백질로 수식된 양이온성 리포솜의 제조 및 혈장 단백흡착 특성)

  • Kim, Sung-Kyu;Jung, Soon-Hwa;Jung, Suk-Hyun;Seong, Ha-Soo;Chi, Sang-Cheol;Cho, Sun-Hang;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • 제52권1호
    • /
    • pp.57-65
    • /
    • 2008
  • are nanometer or micrometer scale vesicles that can be used as drug delivery carriers. However, plain liposomes are plagued by rapid opsonization, making their circulation time in bloodstream be shortened. In this study, model protein, bovine serum albumin (BSA)-coated liposomes were prepared by coating cationic liposomes with BSA molecules at higher pH than isoelectric point of BSA. The BSA molecules coated on the liposomal surface were denatured by thermal treatment at above 60oC. While both plain and cationic liposomes had about mean particle diameter of 1041 nm, BSA-coated cationic liposomes (BCL) had mean particle diameter of 1091 nm. Encapsulation of model drug, doxorubicin (DOX), in liposomes were carried out by using remote loading method and the loading efficiency of DOX to liposomes was about 90%. The mean particle diameter of BCL did not increase in blood plasma and adsorption of plasma protein was much less than plain or cationic liposomes. These results suggest that BCL can be used as a long-circulating liposomes in bloodstream.

Studies on the Interaction of Edible Dyes with Protein (II). The effects of drug additions on protein binding of edible dyes

  • Kim, Bak-Kwang;Lah, Woon-Lyong;Jang, Seong-Ki;Lim, Bang-Ho;Jang, Jae-Yeon;Lee, Wang-Kyu
    • Archives of Pharmacal Research
    • /
    • 제10권1호
    • /
    • pp.29-35
    • /
    • 1987
  • The effect of drug addition on the bovine serum albumin (BSA)-edible dye complex was studied by spectrophotometric method. The edible dyes tested were amranth, erythrosine, tatrazine and sunset yellow. The moles of bound dye per protein mole and free energies for edible dyes bounded were determined at pH 7.4. The values of free energy change by the addition of drughs to BSA-edible dye were ranged fro -6, 260 to 08030 cal/mole. In the wide range of edible dye concentration (0.3-$7{\times}10^{-5}$$^{-5}$ M), acetylsalicylic acid (ASA) showed pattern of displacement different from that of dye. It was assumed that ASA has different binding mechanisms from edible dye.

  • PDF

c-Cbl Acts as an E3 Ligase Against DDA3 for Spindle Dynamics and Centriole Duplication during Mitosis

  • Gwon, Dasom;Hong, Jihee;Jang, Chang-Young
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.840-849
    • /
    • 2019
  • The spatiotemporal mitotic processes are controlled qualitatively by phosphorylation and qualitatively by ubiquitination. Although the SKP1-CUL1-F-box protein (SCF) complex and the anaphase-promoting complex/cyclosome (APC/C) mainly mediate ubiquitin-dependent proteolysis of mitotic regulators, the E3 ligase for a large portion of mitotic proteins has yet to be identified. Here, we report c-Cbl as an E3 ligase that degrades DDA3, a protein involved in spindle dynamics. Depletion of c-Cbl led to increased DDA3 protein levels, resulting in increased recruitment of Kif2a to the mitotic spindle, a concomitant reduction in spindle formation, and chromosome alignment defects. Furthermore, c-Cbl depletion induced centrosome over-duplication and centriole amplification. Therefore, we concluded that c-Cbl controls spindle dynamics and centriole duplication through its E3 ligase activity against DDA3.

Heat Shock Responses for Understanding Diseases of Protein Denaturation

  • Kim, Hee-Jung;Hwang, Na Rae;Lee, Kong-Joo
    • Molecules and Cells
    • /
    • 제23권2호
    • /
    • pp.123-131
    • /
    • 2007
  • Extracellular stresses induce heat shock response and render cells resistant to lethal stresses. Heat shock response involves induction of heat shock proteins (Hsps). Recently the roles of Hsps in neurodegenerative diseases and cancer are attracting increasing attention and have accelerated the study of heat shock response mechanism. This review focuses on the stress sensing steps, molecules involved in Hsps production, diseases related to Hsp malfunctions, and the potential of proteomics as a tool for understanding the complex signaling pathways relevant to these events.

Pristimerin Inhibits Breast Cancer Cell Migration by Up-regulating Regulator of G Protein Signaling 4 Expression

  • Mu, Xian-Min;Shi, Wei;Sun, Li-Xin;Li, Han;Wang, Yu-Rong;Jiang, Zhen-Zhou;Zhang, Lu-Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1097-1104
    • /
    • 2012
  • Background/Aim: Pristimerin isolated from Celastrus and Maytenus spp can inhibit proteasome activity. However, whether pristimerin can modulate cancer metastasis is unknown. Methods: The impacts of pristimerin on the purified and intracellular chymotrypsin proteasomal activity, the levels of regulator of G protein signaling 4 (RGS 4) expression and breast cancer cell lamellipodia formation, and the migration and invasion were determined by enzymatic, Western blot, immunofluorescent, and transwell assays, respectively. Results: We found that pristimerin inhibited human chymotrypsin proteasomal activity in MDA-MB-231 cells in a dose-dependent manner. Pristimerin also inhibited breast cancer cell lamellipodia formation, migration, and invasion in vitro by up-regulating RGS4 expression. Thus, knockdown of RGS4 attenuated pristimerin-mediated inhibition of breast cancer cell migration and invasion. Furthermore, pristimerin inhibited growth and invasion of implanted breast tumors in mice. Conclusion: Pristmerin inhibits proteasomal activity and increases the levels of RGS4, inhibiting the migration and invasion of breast cancer cells.

Characterization of Protein L-isoaspartyl Methyltransferase Purified from Porcine Testis

  • Kikyung Jung;Mihee Shin;Hyungmee Han;Seogyeon Kang;Kim, Taegyun;Sungryoul Hong;Kim, Seunghee;Lee, Youngkeun
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.136-136
    • /
    • 1998
  • L-asparaginyl and L- aspartyl residues in proteins are subject to spontaneous degradation reactions generating isomerized and racemized aspartyl derivatives. Proteins containing L-isoaspartyl and D-aspartyl residues usually have altered structures and diminished biological activities. These residues can be recognized and be repaired to normal L-aspartyl residues by protein L-isoaspartyl methyltransferase(PIMT), which is present at high levels in testis. Although testicular PIMT have been shown to be involved in either sperm motility or sperm maturation, it may play an important role in the repair of damaged sperm proteins during the prolonged period of epididymal transport and storage. In the present study, as a initial step toward elucidating the function of protein carboxylmethylation in testis, we purified PIMT from porcine testicular cytosol as a momeric 27,000 Da species by ammonium sulfate precipitation, DEAE-sephacel chromatography, SAH-liganded affinity chromatography, and gel filtration chromatography. The optimum pH for the reaction was 6.0. $K_{m}$ values of the enzyme for the S-adenosyl-L-methionine (SAM), synthetic oligopeptide(VYP-L-isoD-HA) and histone type II-As were 1.0 ${\mu}$M, 33.2 ${\mu}$M and 276 ${\mu}$M respectively. Consequently, properties of the porcine testicular PIMT is similar to that of other mammalian PIMTs.

  • PDF

Farnesylcysteine Methyltransferase Activity and Ras Protein Expression in Human Stomach Tumor Tissue

  • Han, Eui-Sik;Oh, Hye-Young;Ha, Kwang-Won;Han, Beom-Seok;Hong, Seok-Min;Han, Jung-Whwan;Hong, Sung-Youl;Noh, Sung-Hun;Lee, Hyang-Woo
    • Archives of Pharmacal Research
    • /
    • 제21권4호
    • /
    • pp.378-384
    • /
    • 1998
  • The processing pathway of G-proteins and Ras family proteins includes the isoprenylation of the cysteine residue, followed by proteolysis of three terminal residues and .alpha.-carboxyl methyl esterification of the cysteine residue. Farnesylcysteine methyltransferase (FCMT) activity is responsible for the methylation reaction which play a role in the membrane attachment of a variety of cellular proteins. Four kinds of Ras protein (c-Ha-ras, c-N-Ras, c-Ki-Ras, pan-Ras) expression were detected in adenocarcinoma of human tissue by immunohistochemical method, and hematoxylin and eosin staining. The level of Ras protein in human stomach tumor tissues was much higher than in normal and peritumoral regions of the same biopsy samples. The FCMT activities of each cellular fractions were high in mitochondrial fraction followed by microsomal fraction, whole homogenate and cytosolic fraction. The inhibitory effect on FCMT activity on stomach tumor tissue was determined after treatment with 0.25 $\mu\textrm{M}$ of S-adenosyl-$_L$-homocysteine. S-adenosyl-$_L$-homocysteine inhibited FCMT activity from 11.2% to 30.5%. These results suggested that FCMT might be involved in Ras proteins activity.

  • PDF

Alginate/Carboxymethyl Scleroglucan Hydrogels for Controlled Release of Protein Drugs

  • Lee, Chang-Moon;Jeong, Hwan-Jeong;Kim, Dong-Woon;Lee, Ki-Young
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.429-433
    • /
    • 2008
  • Alginate/carboxymethyl scleroglucan (CMSG) hydrogels were suggested as a novel carrier for the controlled release of protein drugs. The drug release characteristics of alginate hydrogels were improved by CMSG addition. Scleroglucan (Sclg) was carboxymethylated using monochloroacetic acid in aqueous alkaline medium. Alginate/CMSG hydrogels were prepared by dropping the mixture solution of alginate/CMSG into calcium chloride solution. The swelling behaviors and drug release characteristics of the hydrogels were investigated in the buffers of pH 1.2 or 7.4. As the CMSG content increased in the hydrogels, the swelling ratio of the alginate/CMSG hydrogel increased rapidly in the buffer of pH 7.4. At pH 1.2, however, the swelling ratio significantly decreased compared to that at pH 7.4. According to in vitro release tests, only 15% of ovalbumin, investigated as a model protein drug, was released from the alginate/CMSG hydrogels at pH 1.2 within 6 h. At pH 7.4, however, the drug release significantly increased due to the rapid swelling of the hydrogels. The release and swelling behaviors of the hydrogels could be controlled by changing the CMSG content in the hydrogels. These results supported the use of alginate/CMSG hydrogels as a suitable carrier for the controlled release of protein drugs in a pH responsive manner.