• Title/Summary/Keyword: protein cross-linking

Search Result 80, Processing Time 0.031 seconds

Effect of Ultraviolet Irradiation on Molecular Properties of Ovalbumin (자외선 조사가 Ovalbumin의 분자적 성질에 미치는 영향)

  • Cho, Yong-Sik;Song, Kyung-Bin;Yamada, Koji;Han, Gui-Jung
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.276-280
    • /
    • 2008
  • To elucidate the effects of ultraviolet (UV) irradiation on molecular properties of ovalbumin, the molecular weight profile, secondary structure and tertiary structure of proteins were examined after irradiation by UV with 254 nm wavelength for 4, 8, 16 and 32 hrs, respectively. UV irradiation of protein solution caused the disruption on the native state of protein molecules. SDS-PAGE and gel permeation chromatography indicated that radiation caused initial fragmentation of polypeptide chains and as a result subsequent aggregation due to cross-linking of protein molecules. Circular dichroism (CD) study showed that UV irradiation caused the change on the secondary structure resulting in decrease of helical structure or compact denature on structure of protein depending on irradiation period. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. These results suggest that UV irradiation affect the molecular properties of ovalbumin and may have potential as a means to change the antigenicity of protein allergen.

Anti-glycation effect and renal protective activity of Colpomenia sinuosa extracts against advanced glycation end-products (AGEs) (불레기말(Colpomenia sinuosa)의 최종당화산물 저해 효능 및 신장 보호 효과)

  • Kim, Mingyeong;Cho, Chi Heung;Kim, Sera;Choi, In-Wook;Lee, Sang-Hoon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.94-103
    • /
    • 2021
  • Here, we evaluated the anti-glycation effects and renal protective properties of 70% (v/v) ethanolic extract of Colpomenia sinuosa (CSE) against AGEs -induced oxidative stress and apoptosis at different concentrations (1, 5, and 20 ㎍/mL). At 20 ㎍/mL, CSE showed that anti-glycation activities via the inhibition of AGE formation (51.1%), inhibition of AGEs-protein cross-linking (61.7%), and breaking of AGEs-protein cross-links (33.3%), were significantly (###p < 0.001 vs. non-treated group) lower than the nontreated group. Methylglyoxal (MGO) significantly (***p < 0.001) reduced cell viability (24.4%) and increased reactive oxygen species (ROS) level (642.3%), MGO accumulation (119.4 ㎍/mL), and apoptosis (55.0%) in mesangial cells compared to the nontreated group. Pretreatment with CSE significantly (###p < 0.001) increased cell viability (57.8%) and decreased intracellular ROS (96.5%), MGO accumulation (80.0 ㎍/mL), and apoptosis (22.6%) at 20 ㎍/mL. Additionally, we confirmed intracellular AGEs reduction by CSE pretreatment. Consequently, our results suggest that CSE is a good source of natural therapeutics for managing diabetic complications by the antiglycation effect and renal protective activity against MGO-induced oxidative stress.

Insulin-like Growth Factor-I Induces Plectin and MACF1 Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I이 plectin과 MACF1 발현에 미치는 영향)

  • Kim, Hye Jin;Hwang, Ji Sun;Kwak, Yi-Sub;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.22 no.12
    • /
    • pp.1651-1657
    • /
    • 2012
  • Plectin and microtubule actin cross-linking factor 1 (MACF1) are architectural proteins that contribute to the function of skeletal muscle as generators of mechanical force. However, the influence of insulin- like growth factor-I (IGF-I), a master regulator of skeletal muscle cells, on plectin and MACF1 in skeletal muscle cells has not been demonstrated. The effect of IGF-I on plectin and MACF1 gene expression was investigated by treating differentiated C2C12 murine skeletal muscle cells with 20 ng/ml of IGF-I at different time points. The IGF-I treatment increased plectin protein expression in a dose-dependent manner. The mRNA level of plectin was measured by real-time quantitative PCR to determine if plectin induction was regulated pretranslationally. IGF-I treatment resulted in a very rapid induction of plectin mRNA transcript in C2C12 myotubes. Plectin mRNA increased by 140 and 180% after 24 and 48 hours of IGF-I treatment, respectively, and returned to the control level after 72 hours of IGF-I treatment. MACF1 mRNA increased 86 and 90% after 24 and 48 hours of IGF-I treat-ment, respectively, and returned to the control level after 72 hours of IGF-I treatment. These results suggested that the plectin gene is regulated pretranslationally by IGF-I in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the plectin and MACF1 genes in C2C12 skeletal muscle cells and has modulating effects on a cytolinker protein as well as on contractile proteins.

Role of Advanced Glycation End Products in TGF-β1 and Fibronectin Expression in Mesangial Cells Cultured under High Glucose

  • HA Hunjoo;KIM Hwa-Jung;LEE Hi Bahl
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2005
  • Advanced glycation end products (AGE) have been implicated in the pathogenesis of diabetic complications including nephropathy. However, the role of AGE in the activation of mesangial cells cultured under high glucose has not been elucidated. The effects of aminoguanidine, which prevents formation of AGE and protein cross-linking, on the synthesis of $TGF-{\beta}1$ and fibronectin by rat mesangial cells cultured under high glucose for 2 weeks were examined and compared with the effects of $N^G$-nitro-L-arginine methyl ester (NAME), a selective nitric oxide synthase inhibitor, because aminoguanidine also inhibits the inducible nitric oxide synthase. Culture of mesangial cells in 30 mM (high) glucose for 2 weeks induced 1.5-fold (ELISA) and 1.9-fold (Western blot analysis) increase in AGE in the culture media compared to 5.6 mM (control) glucose. Northern blot analysis revealed 1.5-fold increase in $TGF-{\beta}1$ and 1.7-fold increase in fibronectin mRNA expression in cells cultured under high glucose compared to control glucose. Increases in mRNA expression were followed by increased protein synthesis. Mink lung epithelial cell growth inhibition assay revealed 1.4-fold increase in $TGF-{\beta}1$ protein in high glucose media compared to control. Fibronectin protein also increased 2.1-fold that of control glucose by Western blot analysis. Administration of aminoguanidine suppressed AGE formation in a dose dependent manner and at the same time suppressed $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells cultured in both control and high glucose. In contrast, NAME did not affect high glucose-induced changes. These findings support a role for AGE in high glucose-induced upregulation of $TGF-{\beta}1$ and fibronectin synthesis by mesangial cells.

Tobacco mitochondrial small heat shock protein NtHSP24.6 adopts a dimeric configuration and has a broad range of substrates

  • Kim, Keun-Pill;Yu, Ji-Hee;Park, Soo-Min;Koo, Hyun-Jo;Hong, Choo-Bong
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.816-820
    • /
    • 2011
  • There is a broad range of different small heat shock proteins (sHSPs) that have diverse structural and functional characteristics. To better understand the functional role of mitochondrial sHSP, NtHSP24.6 was expressed in Escherichia coli with a hexahistidine tag and purified. The protein was analyzed by non-denaturing PAGE, chemical cross-linking and size exclusion chromatography and the $H_6NtHSP24.6$ protein was found to form a dimer in solution. The in vitro functional analysis of $H_6NtHSP24.6$ using firefly luciferase and citrate synthase demonstrated that this protein displays typical molecular chaperone activity. When cell lysates of E. coli were heated after the addition of $H_6NtHSP24.6$, a broad range of proteins from 10 to 160 kD in size remained in the soluble state. These results suggest that NtHSP24.6 forms a dimer and can function as a molecular chaperone to protect a diverse range of proteins from thermal aggregation.

Inhibitory Activity of Advanced Glycation Endproducts (AGE) Formation of Edible Plants for Development of Anti-Wrinkle Ingredients (피부 주름개선 소재개발을 위한 식용작물의 최종당화산물 생성 억제활성)

  • Lee, Hyun-Sun;Yoon, Jin-A
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.2
    • /
    • pp.186-192
    • /
    • 2010
  • Skin wrinkles typically appear as a result of aging processes. One of causes may be the nonenzymatic glycation followed formation of browning products called advanced glycation endproducts (AGEs), an irreversible cross-linked protein. The accumulation of glycated collagen cross-linked in skin inhibits the formation and function of skin tightening agents such as collagen and elastin. To development for anti-wrinkle ingredients from edible plants, MeOH and hot-water extracts were prepared and evaluated for their inhibitory effects of AGEs formation. The activities of both extracts from bay laurel (Laurus nobilis), cinnamon (Cinnamomum loureirii), clove (Eugenia caryophyllate), oregano (Origanum vulgare), rosemary (Rosemarinus officinalis), savory (Satureja hortensis) and star anis (Illicium verum) of western spices, and blackberry (Rubus coreanus), dayflower (Commelina communis), Epimedium koreamun (whole), termunalia frutus (Terminalia chebula) and turkestan rose (Rosa rugosa) of medicinal plants were higher than the others. Of Korean vegetables, however, MeOH and hot-water extract from only Asters caber and green tea showed higher activities, and no activity in Korean marine plants (seaweeds).

Heterologous Expression of Recombinant Transglutaminase in Bacillus subtilis SCK6 with Optimized Signal Peptide and Codon, and Its Impact on Gelatin Properties

  • Wang, Shiting;Yang, Zhigang;Li, Zhenjiang;Tian, Yongqiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.7
    • /
    • pp.1082-1091
    • /
    • 2020
  • Microbial transglutaminases (MTGs) are widely used in the food industry. In this study, the MTG gene of Streptomyces sp. TYQ1024 was cloned and expressed in a food-grade bacterial strain, Bacillus subtilis SCK6. Extracellular activity of the MTG after codon and signal peptide (SP Ync M) optimization was 20 times that of the pre-optimized enzyme. After purification, the molecular weight of the MTG was 38 kDa and the specific activity was 63.75 U/mg. The optimal temperature and pH for the recombinant MTG activity were 50℃ and 8.0, respectively. MTG activity increased 1.42-fold in the presence of β-ME and 1.6-fold in the presence of DTT. Moreover, 18% sodium chloride still resulted in 83% enzyme activity, which showed good salt tolerance. Cross-linking gelatin with the MTG increased the strength of gelatin 1.67 times and increased the thermal denaturation temperature from 61.8 to 75.8℃. The MTG also significantly increased the strength and thermal stability of gelatin. These characteristics demonstrated the huge commercial potential of MTG, such as for applications in salted protein foods.

Advanced Glycation End Products and Diabetic Complications

  • Singh, Varun Parkash;Bali, Anjana;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.

A Study on the Distribution of Cytochrome-c-oxidase Subunit in the Cristae of Mitochondria (미토콘드리아 크리스테에 존재하는 cytochrome-c-oxidase의 단백질 소단위 분포에 관한 연구)

  • Kim, Soo-Jin;Lee, Ji-Hyon;Chung, Cha-Kwon
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.41-51
    • /
    • 1994
  • The topology of the enzyme has been investigated by biochemical studies including chemical labeling and cross linking. Thirteen subunits(polypeptides) of the cytochrome-c-oxidase have localistic characteristics of existing in the matrix side or cytoplasmic side in the mitochondria. In order to observe the distribution of the enzyme subunit on the mitochondria membrane, immunogold-labeling methods were employed. Antibody was obtained from the serum of immunized rabbit with enzyme subunit antigen which was obtained from cytochrome-c-oxidase of the beef heart muscle mitochondria. Beef heart muscle tissue as a tissue antigen was stained with immunized rabbit IgG and protein A gold complex. Electron microscopy has identified the existance of cytochrome-c-oxidase subunit $Mt_I,\;Mt_{II}\;and\;Mt_{III}$ on the membrane of cristae and outer chamber of mitochondria and the subunit $C_{IV}$ on the membrane of cristae and matrix of mitochondria. Particularly, the subunit $C_{IV}$ was also observed to exist in the sarcoplasm of muscle tissue.

  • PDF

Effect of γ-Irradiation on the Physicochemical Properties of Zein Films

  • Lee, Sehee;Lee, Myoungsuk;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.4
    • /
    • pp.343-348
    • /
    • 2003
  • To elucidate the effect of gamma-irradiation on the physicochemical properties of zein films, the molecular and mechanical properties of the films were examined after irradiation at various irradiation doses. Gamma-irradiation of zein solutions caused the disruption of the ordered structure of the zein molecules, as well as degradation, cross-linking, and aggregation of the polypeptide chains based on an SDS-PAGE study. Gamma-irradiation increased the solubility of zein and decreased the viscosity due to cleavage of the polypeptide chains. Protein solubility of the zein films in urea/2-mercaptoethanol also increased with increasing irradiation doses. Alterations of the zein molecules by irradiation decreased water vapor per-meability by 12% and increased the elongation of zein films. However, mean tensile strength of the zein films was decreased by gamma-irradiation treatment. Measurement of Hunter color values indicated that irradiation caused a destructive effect on yellow pigments, resulting in a significant decrease in Hunter b values. The microstructure as observed by scanning electron microscopy showed that irradiated zein film had a smoother and glossier surface than the non-irradiated films.