• Title/Summary/Keyword: protective antibodies

Search Result 89, Processing Time 0.027 seconds

Prevalence on protective serum antibodies of canine influenzae virus in Ulsan area (울산지역의 개 인플루엔자 바이러스의 항체보유 실태 조사)

  • Sung, Ki-Chang;Lee, Eun-Woo;Park, Chang-Eun
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.4
    • /
    • pp.333-340
    • /
    • 2013
  • Canine influenza virus (CIV) is an emerging pathogen that causes severe and acute respiratory disease in dogs. In 2006, the H3N2 CIV was first identified in dogs from Guangdong province in China. The nine isolates were grouped together with the canine H3N2 viruses isolated from dogs and cats in Korea. The possible interspecies transmission of influenza A virus is very important. We carried out a serological retrospective study using invited canine serum. The hospital invited 123 dogs, first vaccination group were revealed with CIV antibody positive rate of 81.8%. the second vaccination group were detected a positive rate of 91.2%. Antibody generation rate was higher in 3~10 years dogs. Protective antibody titers were detected from 2 weeks to 12 months. thereafter below the protective antibody. The results indicate that H3N2 CIV may have been consistently circulating in dog populations. Recently. These findings showed that H3N2 CIV has the capacity to replicate in and transmit among cohoused dogs and underscore the need for continued public health surveillance. Considering the result continuous management and prevention system against CIV is required at the concentrated animal care centers. The importance of CIV surveillance in this region for understanding the genesis of this virus, and it is important to remain aware of the potential of H3N2 CIV to be transmitted from dogs to the human population.

Outer Membrane Protein H for Protective Immunity Against Pasteurella multocida

  • Lee, Jeong-Min;Kim, Young-Bong;Kwon, Moo-Sik
    • Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.179-184
    • /
    • 2007
  • Pasteurella multocida, a Gram-negative facultative anaerobic bacterium, is a causative animal pathogen in porcine atrophic rhinitis and avian fowl cholera. For the development of recombinant subunit vaccine against P. multocida, we cloned and analyzed the gene for outer membrane protein H (ompH) from a native strain of Pasteurella multocida in Korea. The OmpH had significant similarity in both primary and secondary structure with those of other serotypes. The full-length, and three short fragments of ompH were expressed in E. coli and the recombinant OmpH proteins were purified, respectively. The recombinant OmpH proteins were antigenic and detectable with antisera produced by either immunization of commercial vaccine for respiratory disease or formalin-killed cell. Antibodies raised against the full-length OmpH provided strong protection against P. multocida, however, three short fragments of recombinant OmpHs, respectively, showed slightly lower protection in mice challenge. The recombinant OmpH might be a useful vaccine candidate antigen for P. multocida.

Immunophysiological Defense Mechanism of the Bovine Udder on Mastitis A Review (유우유방의 유방염에 대한 자연방어기전)

  • Han Hong-Ryul
    • Journal of Veterinary Clinics
    • /
    • v.3 no.1
    • /
    • pp.277-298
    • /
    • 1986
  • This paper reviews the mechanisms effecting host defense in the mammary gland and assesses their possible in preventing of bovine mastitis. The streak canal is the first line of defense against invading mastitis pathogens, providing a physical barrier and antibacterial substances. The milk leukocytes are a second defense line by ingesting pathogens breached the streak canal by multiplication, physical passage, and propulsion during milking. Leukocytosis in milk and enhancement of the phagocytic defense machanisms of the udder were accomplished by inserting intramammary devices. Milk antibodies serum derived and synthesized in mamma tissue aggregate and opsonise bacteria, agglutinate and neutralise toxins, and inhibit. binding of bacteria to epitherial surfaces. Vaccination generally has been unsuccessful because protection is not absolute, but immunization is useful in controlling specific pathogens. Immunostimulant to enhance locally the protective nature of antibody-producing plasma cells concentrated in internal teat end tissue may be effective in reducing the occurrence of infection, but ineffective in preventing intramammary infections.

  • PDF

Protective effect of chicken egg yolk antibody in colostrum-deprived neonatal puppies (초유결핍 신생자견에서 난황 항체의 방어효과)

  • Oh, Tae-ho;Han, Hong-ryul
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.903-913
    • /
    • 1996
  • 총 15두의 초유를 섭취하지 않은 신생자견을 대상으로 난황항체를 경구투여한 후 개 파보바이러스를 경구 접종하여 실험감염을 유발시켜 난황항체의 수동 면역에 의한 예방효과를 알아보고자 한다. 항체역가는 면역화된 산란계로부터 분리한 난황항체를 투여한 자견이 비면역 난황항체를 투여한 자견에 비해 높았다. 개 파보바이러스 접종 직전의 항체역가는 대조군의 경우 1:40에서 1:80, 실험군의 경우는 1:320에서 1:1280이었다. 모든 대조군의 자견들은 바이러스 접종후 4일에 임상증상을 나타내었고 총 7두중 6두가 폐사된 반면 실험군 자견은 2두만이 증상을 나타내었고 폐사 자견은 없었다(p<0.01). 개 파보바이러스를 경구 접종한 후 전체 자견의 혈구응집억제반응역가는 접종후 6일까지 감소하는 경향을 보였다. 접종후 5일의 분변내 혈구 응집반응역가는 실험군 자견의 경우 < 2에서 64였으며 대조자견은 216에서 2048로 높았다.

  • PDF

Cytokines in Follicular Helper T Cell Biology in Physiologic and Pathologic Conditions

  • Jinyong Choi;Shane Crotty;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • v.24 no.1
    • /
    • pp.8.1-8.17
    • /
    • 2024
  • Follicular helper T cells (Tfh) play a crucial role in generating high-affinity antibodies (Abs) and establishing immunological memory. Cytokines, among other functional molecules produced by Tfh, are central to germinal center (GC) reactions. This review focuses on the role of cytokines, including IL-21 and IL-4, in regulating B cell responses within the GC, such as differentiation, affinity maturation, and plasma cell development. Additionally, this review explores the impact of other cytokines like CXCL13, IL-10, IL-9, and IL-2 on GC responses and their potential involvement in autoimmune diseases, allergies, and cancer. This review highlights contributions of Tfh-derived cytokines to both protective immunity and immunopathology across a spectrum of diseases. A deeper understanding of Tfh cytokine biology holds promise for insights into biomedical conditions.

Generation and Characterization of Monoclonal Antibodies against Human Interferon-lambda1

  • Hong, Seung-Ho;Kim, Jung-Sik;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • Background: Members belonging to the interferon-lambda (IFN-${\lambda}$) family exert protective action against viral infection; however, the mechanisms of their action have remained elusive. To study IFN-${\lambda}$ biology, such as endocytosis of IFN-${\lambda}$, we produced monoclonal antibodies (Abs) against human IFN-${\lambda}$ and examined their usefulness. Methods: We purified recombinant human IFN-${\lambda}$1 expressed in Escherichia coli by using affinity columns. Then, we generated hybridoma cells by fusing myeloma cells with splenocytes from IFN-${\lambda}$1-immunized mice. For evaluating the neutralizing activity of the monoclonal Abs against IFN-${\lambda}$1, we performed RT-PCR for the MxA transcript. In order to study the binding activity of IFN-${\lambda}$ and the monoclonal Ab complex on HepG2 cells, we labeled the monoclonal Ab with rhodamine and determined the fluorescence intensity. Results: Four hybridoma clones secreting Abs specific to IFN-${\lambda}$1 were generated and designated as HL1, HL2, HL3, and HL4. All the Abs reacted with IFN-${\lambda}$1 in the denatured form as well as in the native form. Abs produced by HL1, HL3, and HL4 did not neutralize the induction of the MxA gene by IFN-${\lambda}$1. We also demonstrated the binding of the HL1 monoclonal anbitody and IFN-${\lambda}$ complex on HepG2 cells. Conclusion: Monoclonal Abs against IFN-${\lambda}$1 were produced. These Abs can be used to study the cellular binding and internalization of IFN-${\lambda}$.

Preliminary assessment of correlation between T-lymphocyte responses and control of porcine reproductive and respiratory syndrome virus (PRRSV) in piglets born after in-utero infection of a type 2 PRRSV

  • Cha, Sang-Ho;Bandaranayaka-Mudiyanselage, Carey;Bandaranayaka-Mudiyanselage, Chandima B.;Ajiththos, Dharani;Yoon, Kyoung-Jin;Gibson, Kathleen A.;Yu, Ji-Eun;Cho, In-Soo;Lee, Stephen S.;Chung, Chungwon J.
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • A preliminary study into the protective mechanisms of adaptive immunity against porcine reproductive and respiratory syndrome virus (PRRSV) in piglets (n = 9) born to a gilt challenged intranasally with a type-2 PRRSV. Immune parameters (neutralizing antibodies, $CD3^+CD4^+$, $CD3^+CD8^+$, $CD3^+CD4^+CD8^+$ T-lymphocytes, and PRRSV-specific interferon $(IFN)-{\gamma}$ secreting T-lymphocytes) were compared with infection parameters (macro- and microscopic lung lesion, and PRRSV-infected porcine alveolar macrophages ($CD172{\alpha}^+PRRSV-N^+\;PAM$) as well as with plasma and lymphoid tissue viral loads. Percentages of three T-lymphocyte phenotypes in 14-days post-birth (dpb) peripheral blood mononuclear cell (PBMC) had significant negative correlations with percentages of $CD172{\alpha}^+PRRSV-N^+\;PAM$ (p < 0.05) as well as with macroscopic lung lesion (p < 0.01). Plasma and tissue viral loads had significant (p < 0.05) negative correlations with $CD3^+CD4^+CD8^+$ T-lymphocyte percentage in PBMC. Frequencies of $CD3^+CD8^+$ and $CD3^+CD4^+$ T-lymphocytes in 14-dpb PBMC had significant negative correlations with of lymph node (p = 0.04) and lung (p = 0.002) viral loads. $IFN-{\gamma}$-secreting T-lymphocytes frequency had a significant negative correlation with gross lung lesion severity (p = 0.002). However, neutralizing antibody titers had no significant negative correlation (p > 0.1) with infection parameters. The results indicate that T-lymphocytes contribute to controlling PRRSV replication in young piglets born after in-utero infection.

Simultaneous Inhibition of CXCR4 and VLA-4 Exhibits Combinatorial Effect in Overcoming Stroma-Mediated Chemotherapy Resistance in Mantle Cell Lymphoma Cells

  • Kim, Yu-Ri;Eom, Ki-Seong
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.296-306
    • /
    • 2014
  • There is growing evidence that crosstalk between mantle cell lymphoma (MCL) cells and stromal microenvironments, such as bone marrow and secondary lymphoid tissues, promotes tumor progression by enhancing survival and growth as well as drug resistance of MCL cells. Recent advances in the understanding of lymphoma microenvironment have led to the identification of crucial factors involved in the crosstalk and subsequent generation of their targeted agents. In the present study, we evaluated the combinatory effect of blocking antibodies (Ab) targeting CXCR4 and VLA-4, both of which were known to play significant roles in the induction of environment-mediated drug resistance (EMDR) in MCL cell line, Jeko-1. Simultaneous treatment with anti-CXCR4 and anti-VLA-4 Ab not only reduced the migration of Jeko-1 cells into the protective stromal cells, but also enhanced sensitivity of Jeko-1 to a chemotherapeutic agent to a greater degree than with either Ab alone. These combinatorial effects were associated with decreased phosphorylation of ERK1/2, AKT and NF-${\kappa}B$. Importantly, drug resistance could not be overcome once the adhesion of Jeko-1 to the stromal occurred despite the combined use of Abs, suggesting that the efforts to mitigate migration of MCLs should be attempted as much as possible. Our results provide a basis for a future development of therapeutic strategies targeting both CXCR4 and VLA-4, such as Ab combinations or bispecific antibodies, to improve treatment outcomes of MCL with grave prognosis.

Fusobacterium nucleatum modulates serum binding to Porphyromonas gingivalis biofilm (Porphyromonas gingivalis biofilm에 대한 면역혈청의 침투력에 대한 Fusobacterium nucleatum의 조절효과)

  • Choi, Jeom-Il;Kim, Sung-Jo;Kim, Soo-Jin
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.4
    • /
    • pp.661-668
    • /
    • 2001
  • Anti-P. gingivalis immune sera were obtained from mice immunized with either P. gingivalis alone, or F. nucleaturm followed by P. gingivalis. Two groups of immune sera were examined for binding capacity to P. gingivalis biofilm by confocal laser scanning microscope, Antibody avidity index was also determined for each immune sera. The results indicated that prior immunization of mice with F. nucleaturm impaired P. gingivalis-specific immune sera in binding capacity to biofilm and antibody avidity to P. gingivalis. Elevated antibody responses in patients with destructive periodontal disease has often been related to suboptimal level of protective antibody $(opsonophagocytosis)^{1-3)}$ while post-immune sera obtained with experimental animals using a single periodontal pathogen demonstrated satisfactory levels of protective function against the homologous bacterial $challenge^{4,5)}$.The reason is unclear why elevated IgG responses in periodontal patients to periodontal pathogens do not necessarily reflect their protective function. Such an immune deviation might be derived from the fact that destructive periodontal disease is cumulative result of immunopathologic processes responding to an array of different colonizing microorganisms sequentially infecting in the subgingival environmental niche. Fusobacterium nucleaturm is one of the key pathogens in gingivitis, in the transitional phase of conversion of gingivitis into destructive periodontitk, and in adult $periodontitis^{6-8)}$. It also plays a central role in coaggregation with other important microbial species in subgingival $area^{6,9,10)}$ as well as in $biofilm^{11)}$, especially with Porphyromonas gingjvalis in synergism of virulence in human periodontal disease or in animal $models^{12-14)}$. This organism has also been reported to have immune modulating activity for secondary immune response to Actinobacillus $actinomycetemcomitans^{15)}$. It is presumed that sequential colonization and intermicrobial coaggregation between intermediate and late colonizers could potentially modulate the immune responses and development of specific T cell phenotypes in periodontal lesions. We have recently demonstrated the skewed polarization of P. gingivalis-specific helper T cell clones in mice immunized with F. nucleaturm followed by P. $gingivalis.^{16)}$. Consequently F. nucleaturm may initially prime the immune cells and modify their responses to the successive organism, P. gingivalis. This could explain why one frequently observes non-protective serum antibodies to P. gingivalis in periodontal patients in contrast with those obtained from animals that were immunized with $P.gingivalis\;alone^{17)}$. The present study was performed to investigate the immune modulating effect of F. nucleatum on serum binding to experimental biofilms and the avidity of anti-P. gingivalis antibody.

  • PDF

Identification and Cloning of a Fraction 1 Protein of Yersinia pestis that Produces Protective Immune Responses

  • Kim Jong-Hyun;Cho Seung-Hak;Jang Hyun-Chul;Lee Hee-Cheul;Kim Young-Il;Kang Yeon-Ho;Lee Bok-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1180-1184
    • /
    • 2006
  • The capsule that surrounds Yersinia pestis cells is composed of a protein-polysacchride complex; the purified protein component is fraction I (F1) antigen. We report the cloning of the cafl gene and its expression in Escherichia coli using the vector pETl02/D-TOPO and the F1-specific monoclonal antibody. The recombinant F1 (rF1) antigen had a molecular size of 17.5 kDa, which was identical to that of the F1 antigen produced by Y. pestis. Recombinant F1 protein was found to react to polyclonal antiserum to Y. pestis Fl. Recombinant F1 was purified by ProBond purification system and induced a protective immune response in BALB/c mice challenged with up to 10$^5$ virulent Y. pestis. Purified rF1 protein was used in an ELISA to evaluate the ability of a method to detect antibodies to Y. pestis in animal sera. These results strongly indicated that the rF1 protein is a suitable species-specific immunodiagnostic antigen and vaccine candidate.